

Creating Reports
Version 7.2

DN1001056.1101

FOCUS for S/390

Cactus, EDA/SQL, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, FOCUS Vision, Hospital-Trac, Information Builders, the Information
Builders logo, Parlay, PC/FOCUS, SmartMart, SmartMode, SNAPpack, TableTalk, WALDO, Web390, WebFOCUS and WorldMART are
registered trademarks and EDA, iWay, and iWay Software are trademarks of Information Builders, Inc.
Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.
Allaire and JRun are trademarks of Allaire Corporation.
NOMAD is a registered trademark of Aonix.
UniVerse is a registered trademark of Ardent Software, Inc.
IRMA is a trademark of Attachmate Corporation.
Baan is a registered trademark of Baan Company N.V.
SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.
Impromptu is a registered trademark of Cognos.
Alpha, DEC, DECnet, NonStop, and VAX are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compaq Computer
Corporation.
CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, & Ingres are registered trademarks of Computer Associates International, Inc.
MODEL 204 and M204 are registered trademarks of Computer Corporation of America.
Paradox is a registered trademark of Corel Corporation.
StorHouse is a registered trademark of FileTek, Inc.
HP MPE/iX is a registered trademark of Hewlett Packard Corporation.
Informix is a registered trademark of Informix Software, Inc.
ACF/VTAM, AIX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MVS/ESA, OS/2, OS/390,
OS/400, RACF, RS/6000, S/390, VM/ESA, VSE/ESA and VTAM are registered trademarks and DB2/2, Hiperspace, IMS, MVS, QMF,
SQL/DS, WebSphere, z/OS and z/VM are trademarks of International Business Machines Corporation.
INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.
Orbix is a registered trademark of Iona Technologies Inc.
Approach and DataLens are registered trademarks of Lotus Development Corporation.
ObjectView is a trademark of Matesys Corporation.
ActiveX, FrontPage, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual FoxPro, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.
Teradata is a registered trademark of NCR International, Inc.
Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
CORBA is a trademark of Object Management Group, Inc.
Oracle is a registered trademark and Rdb is a trademark of Oracle Corporation.
PeopleSoft is a registered trademark of PeopleSoft, Inc.
INFOAccess is a trademark of Pioneer Systems, Inc.
Progress is a registered trademark of Progress Software Corporation.
Red Brick Warehouse is a trademark of Red Brick Systems.
SAP and SAP R/3 are registered trademarks and SAP Business Information Warehouse and SAP BW are trademarks of SAP AG.
Silverstream is a trademark of Silverstream Software.
ADABAS is a registered trademark of Software A.G.
CONNECT:Direct is a trademark of Sterling Commerce.
Java and all Java-based marks, NetDynamics, Solaris, SunOS, and iPlanet are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.
PowerBuilder and Sybase are registered trademarks and SQL Server is a trademark of Sybase, Inc.
Unicode is a trademark of Unicode, Inc.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most, if not all
cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s intent to
use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any of these
names other than to refer to the product described.
Copyright © 2001 by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.

Printed in the U.S.A.

Creating Reports

Preface
This documentation describes FOCUS Reporting environments and features for FOCUS�
Version 7.2. It is intended for any FOCUS user who will access corporate data to produce
reports. This manual is part of the FOCUS for S/390 documentation set.

References to MVS apply to all supported versions of the OS/390, z/OS, and MVS
operating environments. References to VM apply to all supported versions of the
VM/ESA and z/VM operating environments.

The documentation set consists of the following components:

• The Creating Reports manual describes FOCUS Reporting environments and
features.

• The Describing Data manual explains how to create the metadata for the data
sources that your FOCUS procedures will access.

• The Developing Applications manual describes FOCUS Application Development
tools and environments.

• The Maintaining Databases manual describes FOCUS data management facilities
and environments.

• The Using Functions manual describes internal functions and user-written
subroutines.

• The Overview and Operating Environments manual contains an introduction to
FOCUS and FOCUS tools and describes how to use FOCUS in the VM/CMS and
MVS (OS/390) environments.

The users’ documentation for FOCUS Version 7.2 is organized to provide you with a
useful, comprehensive guide to FOCUS.

Chapters need not be read in the order in which they appear. Though FOCUS facilities
and concepts are related, each chapter fully covers its respective topic. To enhance your
understanding of a given topic, references to related topics throughout the documentation
set are provided. The following pages detail documentation organization and
conventions.

Preface

 Information Builders

How This Manual Is Organized
This manual is organized as follows:

Chapter/Appendix Contents

1 Creating Tabular
Reports

Provides an introduction to the TABLE command, a
powerful tool for analyzing data.

2 Displaying Report Data Describes ways to retrieve field values from a
database and display them.

3 Viewing and Printing
Report Output

Describes the HotScreen facility for viewing report
output.

4 Sorting Tabular Reports Describes how to display report information grouped
in a particular order by sorting.

5 Selecting Records for
Your Report

Describes how to use and specify selection criteria to
display only the field values that meet your needs.

6 Creating Temporary
Fields

Describes how to use the DEFINE and COMPUTE
commands to create temporary fields.

7 Including Totals and
Subtotals

Describes how to use subtotals and grand totals to
summarize numeric information and aid in
interpreting detailed information in a report.

8 Using Expressions Describes how to combine operators, fieldnames,
and constants in an expression to derive new values.

9 Customizing Tabular
Reports

Describes how to override the default report formats
to meet your individual presentation needs.

10 Styling Reports:
StyleSheets

Describes how to visually style your reports with
StyleSheets, used to control report output to be
printed on a PostScript printer.

 How This Manual Is Organized

Creating Reports

Chapter/Appendix Contents

11 Saving and Reusing
Report Output

Describes how to save report output in a wide variety
of formats.

12 Handling Records With
Missing Field Values

Describes how missing data affects report results and
how to treat and represent it.

13 Joining Data Sources Describes how to join two or more related data
sources to create a larger integrated data structure
from which you can report.

14 Merging Data Sources Describes how to merge and concatenate two or
more data sources into a new permanent data file.

15 Improving Report
Processing

Describes methods of increasing data retrieval and
reporting efficiency.

16 Creating Financial
Reports

Describes Financial Modeling Language (FML),
used to create and present financially oriented data,
using inter-row calculations.

17 Creating a Free-Form
Report

Describes how to present data in an unrestricted
(non-tabular) format.

18 Creating Graphs:
GRAPH

Describes the FOCUS GRAPH facility, which you
can use to display data in graph format instead of
tabular format.

19 Using SQL to Create
Reports

Describes how to use SQL to retrieve and analyze
FOCUS and RDBMS data.

A Master Files and
Diagrams

Contains Master Files and diagrams of sample
databases used in the documentation examples.

B Error Messages Describes how to access FOCUS error messages.

C Syntax Summary Summarizes FOCUS Table commands and options.

D Writing User-Coded
Programs to Create
HOLD Files

Describes how to write programs that get records
retrieved by FOCUS so you can write them to files
in a custom format.

E Character Charts Lists EBCDIC codes and their corresponding
character representations.

Preface

 Information Builders

Summary of New Features
The new FOCUS features and enhancements described in this documentation set are
listed in the following table.

New Feature Manual Chapter

Field-based Reformatting Creating Reports Chapter 1, Creating Tabular
Reports

Increased Report Width Creating Reports Chapter 1, Creating Tabular
Reports

ACROSS-TOTAL Creating Reports Chapter 4, Sorting Tabular
Reports

Tiles Creating Reports Chapter 4, Sorting Tabular
Reports

DEFINE FILE SAVE and
DEFINE FILE RETURN

Creating Reports Chapter 6, Creating
Temporary Fields

Forecast Creating Reports Chapter 6, Creating
Temporary Fields

Creating Comma-Delimited
Files

Creating Reports Chapter 11, Saving and
Reusing Report Output

Creating Tab-Delimited
Files

Creating Reports Chapter 11, Saving and
Reusing Report Output

Long Master File Names Creating Reports Chapter 11, Saving and
Reusing Report Output

JOIN WHERE Creating Reports Chapter 13, Joining Data
Sources

KEEPDEFINES Creating Reports Chapter 13, Joining Data
Sources

Long Master File Names Describing Data Chapter 1, Understanding a
Data Source Description

4K Alpha Fields Describing Data Chapter 4, Describing an
Individual Field

Extended Currency Symbol
Support

Describing Data Chapter 4, Describing an
Individual Field

 Summary of New Features

Creating Reports

New Feature Manual Chapter

SUFFIX =
COMT/COMMA/TABT

Describing Data Chapter 5, Describing a
Sequential, VSAM, or ISAM
Data Source

AUTODATE Describing Data Chapter 6, Describing a
FOCUS Data Source

CDN Developing
Applications

Chapter 1, Customizing Your
Environment

CENT-ZERO Developing
Applications

Chapter 1, Customizing Your
Environment

Exit on Error Developing
Applications

Chapter 1, Customizing Your
Environment

KEEPDEFINES Developing
Applications

Chapter 1, Customizing Your
Environment

PCOMMA Developing
Applications

Chapter 1, Customizing Your
Environment

Unlimited -INCLUDEs Developing
Applications

Chapter 3, Managing an
Application With Dialogue
Manager

SQUEEZ Function Using Functions Chapter 3, Character
Functions

STRIP Function Using Functions Chapter 3, Character
Functions

TRIM Function Using Functions Chapter 3, Character
Functions

DYNAM ALLOC
LONGNAME

Overview and
Operating
Environments

Chapter 5, OS/390 and MVS
Guide to Operations

Preface

 Information Builders

Documentation Conventions
The following conventions apply throughout this manual:

Convention Description

THIS TYPEFACE or

this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value
that you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable) in a text paragraph,
indicates a cross-reference, or emphasizes an important term.

this typeface Highlights file names and commands (in a text paragraph)
that must be lowercase.

this typeface Indicates buttons, menu items, and dialog box options you
can click or select.

Key + Key Indicates keys that must be pressed simultaneously.

{ } Indicates two choices from which you must choose one. You
type one of these choices, not the braces.

[] Indicates a group of optional parameters. None are required,
but you may select one of them. Type only the information
within the brackets, not the brackets.

| Separates two mutually exclusive choices in a syntax line.
You type one of these choices, not the symbol.

... Indicates that you can enter a parameter multiple times. Type
only the parameters, not the ellipsis points (…).

.

.

.

Indicates that there are (or could be) intervening or
additional commands.

Related Publications
Visit our World Wide Web site, http://www.informationbuilders.com, to view a current
listing of our publications and to place an order. To obtain a print catalog, contact the
Publications Order Department at (800) 969-4636.

 Customer Support

Creating Reports

Customer Support
Do you have questions about FOCUS?

Call Information Builders Customer Support Service (CSS) at (800) 736-6130 or
(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 a.m. and 8:00 p.m. EST to address all your FOCUS questions. Information
Builders consultants can also give you general guidance regarding product capabilities
and documentation. Please be ready to provide your six-digit site code number (xxxx.xx)
when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site,
http://www.informationbuilders.com. It connects you to the tracking system and known-
problem database at the Information Builders support center. Registered users can open,
update, and view the status of cases in the tracking system and read descriptions of
reported software issues. New users can register immediately for this service. The
technical support section of www.informationbuilders.com also provides usage
techniques, diagnostic tips, and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code number (xxxx.xx).

• The FOCEXEC procedure (preferably with line numbers).

• Master file with picture (provided by CHECK FILE).

Preface

 Information Builders

• Run sheet (beginning at login, including call to FOCUS), containing the following
information:

• ? RELEASE

• ? FDT

• ? LET

• ? LOAD

• ? COMBINE

• ? JOIN

• ? DEFINE

• ? STAT

• ? SET/? SET GRAPH

• ? USE

• ? TSO DDNAME OR CMS FILEDEF

• The exact nature of the problem:

• Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

• The error message and code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, FOCUS, your security
system, or an interface system changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For
example, if you are having problems joining two data sources, have you tried
executing a query containing just the code to access the data source?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or
production? Do you just have questions about functionality or documentation?

 User Feedback

Creating Reports

User Feedback
The Documentation Services staff at Information Builders welcomes any opinion you can
offer regarding this manual. Please use the Document Feedback form on our Web site,
http://www.informationbuilders.com/bookstore/derf.html. You can also use the Reader
Comments form at the end of this manual to relay suggestions for improving the
publication or to alert us to corrections.

Thank you, in advance, for your comments.

Information Builders Consulting and Training
Interested in training? Information Builders Education Department offers a wide variety
of training courses for this and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes,
visit our World Wide Web site (http://www.informationbuilders.com) or call (800)
969-INFO to speak to an Education Representative.

Creating Reports

Contents
1 Creating Tabular Reports ...1-1

Requirements for Creating a Report ...1-2
Creating a Report Request..1-3

Beginning a Report Request..1-3
Requesting Help When Issuing a Report Request...1-4
Completing a Report Request..1-5
Selecting a Report Output Destination ..1-5

The Parts of a Report Request ..1-6
Displaying Data...1-6
Sorting a Report ..1-7
Selecting Records..1-10
Showing Subtotals and Totals ...1-10
Creating Temporary Fields..1-12

Including Display Fields in a Report Request ..1-13
Referring to Fields in a Report Request ...1-13

Referring to an Individual Field ..1-14
Referring to Fields Using Long and Qualified Field Names...1-14
Referring to All of the Fields in a Segment...1-16
Displaying a List of Field Names..1-16
Listing Field Names, Aliases, and Format Information ..1-17

Customizing a Report ...1-17
Changing the Format of a Report Column ...1-19

Field-Based Reformatting ...1-21
Determining the Width of a Report Column ...1-24

Saving and Reusing Report Output ..1-24
2 Displaying Report Data..2-1

Displaying Individual Values ...2-3
Displaying All Fields ..2-5
Displaying the Structure of a Multi-Path Data Source ..2-6

Adding Values..2-9
Counting Values ...2-10

Counting Segment Instances ...2-12
Expanding Byte Precision for COUNT and LIST ..2-13

Contents

 Information Builders

Manipulating Display Fields With Prefix Operators ..2-15
Averaging Values of a Field..2-17
Averaging the Sum of Squared Fields...2-17
Calculating Maximum and Minimum Field Values ..2-18
Calculating Column and Row Percents ...2-19
Producing a Direct Percent of a Count ..2-21
Aggregating and Listing Unique Values ...2-21
Retrieving First and Last Records ...2-24
Summing and Counting Values...2-27

Manipulating Display Field Values in a Sort Group ..2-29
3 Viewing and Printing Report Output ...3-1

Displaying Reports in Hot Screen ..3-2
Using PRINTPLUS ...3-4
Controlling the Display of Empty Reports ..3-6
Accessing Help Information..3-6

Scrolling a Report...3-7
Scrolling Forward..3-7
Scrolling Backward ...3-7
Scrolling Horizontally ...3-8
Scrolling From Fixed Columns (Fencing)...3-8
Scrolling Report Headings ..3-9
Saving Selected Data...3-9
Locating Character Strings..3-10
Repeating Commands..3-10
Redisplaying Reports ..3-11
Previewing Your Report..3-12
Displaying BY Fields With Panels..3-12
Scrolling by Columns of BY Fields in Panels ...3-14
The SET COLUMNS Command...3-14

Displaying Reports in the Panel Facility ..3-15
Printing Reports..3-16

The OFFLINE Command..3-16
Printing Reports in Hot Screen..3-17

Displaying Reports in the Terminal Operator Environment...3-17
4 Sorting Tabular Reports ..4-1

Sorting Rows ..4-3
Using Multiple Sort Fields With BY...4-4

Sorting Columns...4-5
Using Multiple Sort Fields With ACROSS...4-7
Producing Column Totals With ACROSS-TOTAL..4-7

Sorting Rows and Columns ..4-9

 Contents

Creating Reports

Specifying the Sort Order...4-10
Specifying Your Own Sort Order..4-12

Grouping Numeric Data Into Ranges ...4-16
Grouping Numeric Data Into Tiles..4-19

Restricting Sort Field Values by Highest/Lowest Rank ...4-24
Aggregating and Sorting Report Columns ...4-25
Ranking Sort Field Values..4-27
Hiding Sort Values ...4-29
Sorting With Multiple Display Commands ..4-31
Improving Efficiency With External Sorts ...4-33

Aggregation by External Sort..4-35
Changing Retrieval Order With Aggregation..4-37
Using External Sorts to Extract Data...4-37
Estimating SORTWORK Sizes for an External Sort ..4-38
Displaying External Sort Messages...4-39

5 Selecting Records for Your Report ...5-1
Choosing a Filtering Method..5-2
Selections Based on Individual Values...5-2

Controlling Record Selection in Multi-Path Data Sources..5-5
Selection Based on Aggregate Values..5-10
Using Compound Expressions for Record Selection..5-12
Using Operators in Record Selection Tests ..5-13
Types of Record Selection Tests ..5-16

Range Tests With FROM and TO...5-16
Range Tests With GE and LE or GT and LT ..5-17
Missing Data Tests ..5-19
Character String Screening With CONTAINS and OMITS..5-19
Screening on Masked Fields With LIKE and IS ...5-20
Using an Escape Character for LIKE ..5-24
Qualifying Parent Segments Using INCLUDES and EXCLUDES ..5-25

Selections Based on Group Key Values ...5-26
Setting Limits on the Number of Records Read ...5-27
Selecting Records Using IF Phrases ...5-28
Reading Selection Values From a File ...5-29
Assigning Screening Conditions to a File ..5-32

Applying Filters to Joined Structures ..5-38
VSAM Record Selection Efficiencies ..5-39

Reporting From Files With Alternate Indexes ..5-39

Contents

 Information Builders

6 Creating Temporary Fields ...6-1
The Difference Between DEFINE and COMPUTE ...6-2
Defining a Virtual Field..6-4

Defining Multiple Virtual Fields ...6-7
Establishing a Segment Location for a Virtual Field...6-8
Defining Virtual Fields Using a Multi-Path Data Source..6-9
Increasing the Speed of DEFINE Calculations ...6-10
Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN...6-10

Computing Calculated Values ..6-11
Using Positional Column Referencing With Calculated Values ...6-14
Using COMPUTE and ACROSS ..6-15
Sorting Calculated Values ...6-15
Screening on Calculated Values..6-16

Calculating Trend Values and Forecasts ..6-17
FORECAST Processing ..6-17
Forecasting Methods ...6-21
Using a Simple Moving Average ..6-21
Using an Exponential Moving Average ..6-25
Using a Linear Regression Equation ...6-27
FORECAST Reporting Techniques ..6-29

Using Functions With Temporary Fields ...6-32
Creating Temporary Fields Unrelated to Master Files ...6-33

7 Including Totals and Subtotals..7-1
Calculating Row and Column Totals..7-2
Adding Section Totals and a Grand Total ..7-6
Including Subtotals...7-8
Recalculating Values for Subtotal Rows ..7-12
Performing Calculations at Sort Field Breaks ..7-16
Suppressing Grand Totals...7-19
Conditionally Displaying Summary Lines and Text ..7-21

8 Using Expressions...8-1
Using Expressions in Commands and Phrases ...8-2
Types of Expressions..8-3

Expressions and Field Formats..8-3
Creating a Numeric Expression..8-4

Order of Evaluation...8-5

 Contents

Creating Reports

Creating a Date or Date-Time Expression..8-7
Formats for Date Values..8-8
Performing Calculations on Dates...8-9
Cross-Century Dates With DEFINE and COMPUTE...8-10
Returned Field Format Selection...8-10
Using a Date Constant in an Expression ...8-10
Extracting a Date Component ...8-11
Combining Fields With Different Formats in an Expression ..8-11

Creating a Character Expression ..8-12
Embedding a Quotation Mark in a Quote-Delimited Literal String ..8-12
Concatenating Character Strings ...8-13

Creating a Logical Expression..8-14
Creating a Conditional Expression ...8-16

9 Customizing Tabular Reports ...9-1
Creating Paging and Numbering ..9-2

Specifying a Page Break: PAGE-BREAK ..9-2
Inserting Page Numbers: TABPAGENO ..9-4
Suppressing Page Numbers: SET PAGE...9-5
Preventing an Undesirable Split ..9-5

Separating Sections of a Report: SKIP-LINE and UNDER-LINE...9-8
Adding Blank Lines: SKIP-LINE ...9-8
Underlining Values: UNDER-LINE ...9-10

Suppressing Fields: SUP-PRINT or NOPRINT ...9-11
Creating New Column Titles: AS...9-15
Customizing Column Names: SET QUALTITLES ...9-17
Positioning Columns: IN ..9-18
Reducing a Report’s Width: FOLD-LINE and OVER...9-22

Compressing the Columns of Reports: FOLD-LINE ..9-22
Decreasing the Width of a Report: OVER ..9-23

Controlling Column Spacing: SET SPACES ...9-25
Column Title Justification ..9-26
Customizing Reports With SET Parameters...9-27
Producing Headings and Footings..9-29

Report and Page Headings ..9-30
Report and Page Footings..9-33
Subheads ...9-35
Subfoots...9-36
Positioning Text ..9-39
Using Data in Headings and Footings ...9-41
Producing a Free-Form Report..9-45

Contents

 Information Builders

Conditionally Formatting Reports With the WHEN Clause...9-46
Controlling the Display of Empty Reports ...9-52

10 Styling Reports: StyleSheets ..10-1
Introduction to StyleSheets...10-2
What Is a StyleSheet?...10-5

What Is a Style?...10-5
When You Need to Create a StyleSheet File...10-6
Comparison of Reports With and Without StyleSheets ..10-7

Creating a StyleSheet ...10-9
Creating a StyleSheet Within a Report Request ..10-9
Activating an Existing StyleSheet File..10-11

Printing Styled Reports...10-12
Styling the Page Layout..10-13

Displaying Current Settings: The ? STYLE Query ...10-17
StyleSheet Files ..10-17

StyleSheet Syntax..10-18
Checking StyleSheet Syntax ...10-19
Style Definitions..10-19

Identifying Report Components ...10-21
Selecting and Manipulating Report Components..10-24
Selecting Headings and Footings ..10-28
Selecting Report Columns...10-34
Positioning Headings, Footings, and Columns..10-38
Determining Column Widths ..10-39
Changing Column Sequence ...10-40
Specifying Column Spacing..10-42

StyleSheet Inheritance ..10-43
Conditional Styling...10-49

11 Saving and Reusing Report Output ..11-1
Saving Your Report Output..11-2
Creating HOLD and PCHOLD Files..11-3
Holding Report Output in FOCUS Format...11-9
Controlling Attributes in HOLD Master Files..11-14

Controlling Field Names in a HOLD Master File ...11-14
Controlling Fields in a HOLD Master File..11-18
Controlling the TITLE and ACCEPT Attributes in the HOLD Master File..11-19

Keyed Retrieval From HOLD Files..11-21
Creating SAVE and SAVB Files..11-23
Choosing Output File Formats ...11-26

 Contents

Creating Reports

Saving Report Output in INTERNAL Format..11-42
12 Handling Records With Missing Field Values ...12-1

Irrelevant Report Data ..12-2
Missing Field Values..12-3

MISSING Attribute in the Master File ..12-4
MISSING Attribute in a DEFINE Command..12-5
Testing for a Segment With a Missing Field Value ..12-9
Preserving Missing Data Values in an Output File ...12-12

Handling a Missing Segment Instance ...12-13
Including Missing Instances in Reports With the ALL. Prefix ...12-16
Including Missing Instances in Reports With the SET ALL Command ...12-17
Testing for Missing Instances in FOCUS Data Sources..12-19

Setting the NODATA Character String..12-20
13 Joining Data Sources..13-1

Types of Joins...13-2
Unique and Non-Unique Joined Structures ...13-4
Recursive Joined Structures ..13-7

How the JOIN Command Works..13-12
Creating an Equijoin...13-13

Joining From a Virtual Field to a Real Field Using an Equijoin ...13-17
Data Formats of Shared Fields ..13-21
Joining Fields With Different Numeric Data Types..13-22

Using a Conditional Join ..13-23
Preserving Virtual Fields During Join Parsing ...13-26

Preserving Virtual Fields Using KEEPDEFINES ...13-26
Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN...13-29
Screening Segments With Conditional JOIN Expressions..13-31
Parsing WHERE Criteria in a Join ..13-31

Displaying Joined Structures..13-31
Clearing Joined Structures..13-34

Clearing a Conditional Join...13-34
14 Merging Data Sources..14-1

Merging Data..14-2
MATCH Processing ...14-5
MATCH Processing With Common High Order Sort Fields ...14-9
Fine Tuning MATCH Processing...14-12
Universal Concatenation ..14-14

Field Name and Format Matching...14-17

Contents

 Information Builders

Merging Concatenated Data Sources ...14-19
Using Sort Fields in MATCH Requests ..14-22

Cartesian Product ...14-25
15 Improving Report Processing..15-1

Rotating a Data Structure for Enhanced Retrieval..15-2
Optimizing Retrieval Speed for FOCUS Data Sources ..15-4
Automatic Indexed Retrieval..15-4
Data Retrieval Using TABLEF ..15-6
Preserving the Internal Matrix of Your Last Report...15-7

16 Creating Financial Reports..16-1
Reporting With FML..16-2
Creating Rows From Data ..16-5

Changing Row Titles...16-7
Creating Rows From Multiple Records...16-8
Using the BY Phrase in FML Requests...16-10

Performing Inter-Row Calculations..16-12
Referring to Rows ..16-13
Referring to Columns ...16-16

Referring to Column Numbers ..16-16
Referring to Contiguous Columns...16-17
Referring to Column Addresses ..16-18
Referring to Relative Column Addresses ..16-19
Referring to Column Values..16-20

Referring to Cells ...16-20
Using Subroutines in Calculations ...16-22
Supplying Data Directly in the FML Request ..16-24
Inserting Rows of Free Text ...16-25
Adding Columns to an FML Report...16-27
Creating Recursive Models ..16-28
Formatting an FML Report ..16-30
Suppressing Tagged Rows ...16-31

Suppressing Rows With No Data ..16-32
Saving and Retrieving Intermediate Report Results...16-32

Posting Data ..16-33
Creating HOLD Files From FML Reports ...16-35

 Contents

Creating Reports

17 Creating a Free-Form Report ...17-1
Introduction to Free-Form Reports...17-2
Designing a Free-Form Report ...17-6

Incorporating Text in a Free-Form Report ..17-6
Incorporating Data Fields in a Free-Form Report ...17-7
Incorporating Graphic Characters in a Free-Form Report...17-7
Laying Out a Free-Form Report ..17-8
Sorting and Selecting Records in a Free-Form Report..17-8

18 Creating Graphs: GRAPH ..18-1
Introduction ..18-2

GRAPH vs. TABLE Requests...18-2
Controlling the Format ..18-7
Graphic Devices Supported...18-10

Command Syntax ...18-12
GRAPH vs. TABLE Syntax..18-12
Specifying Graph Forms and Contents..18-14

Graph Forms...18-21
Connected Point Plots ...18-22
Histograms ..18-26
Bar Charts..18-29
Pie Charts ..18-33
Scatter Diagrams ...18-35

Adjusting Graph Elements ...18-38
The Horizontal Axis: System Defaults..18-40
The Vertical Axis: System Defaults ..18-43
Highlighting Facilities...18-45

Special Topics ..18-46
Plotting Dates ..18-47
Handling Missing Data..18-48
Using Fixed-Axis Scales ...18-50
Saving Formatted GRAPH Output..18-51
Displaying Graphs With PC/FOCUS or FOCUS for Windows ..18-53
Creating Formatted Input for CA-TELLAGRAF..18-53
Using the FOCUS ICU Interface...18-54

Special Graphics Devices ...18-54
Medium-Resolution Devices...18-55
High-Resolution Devices ..18-55

Command and SET Parameter Summary ...18-57
GRAPH Command..18-57
SET Parameters ...18-60

Contents

 Information Builders

19 Using SQL to Create Reports ..19-1
Supported and Unsupported SQL Statements ..19-2
Using SQL Translator Commands ...19-5

Automatic Passthru ...19-6
The SQL SELECT Statement..19-7
SQL Joins ..19-8
SQL CREATE TABLE and INSERT Commands ..19-11
SQL CREATE VIEW and DROP VIEW Commands...19-12
Cartesian Product Style Answer Sets ..19-13
Continental Decimal Notation (CDN)...19-13
Specifying Field Names in SQL Requests ..19-14
SQL UNION, INTERSECT, and EXCEPT Operators..19-15
Numeric Constants, Literals, Expressions, and Functions...19-15

SQL Translator Support for Date, Time, and Timestamp Fields..19-15
Extracting Date-Time Components Using the SQL Translator...19-17

Index Optimized Retrieval ...19-20
Optimized Joins...19-20

TABLEF Optimization...19-21
SQL INSERT, UPDATE, and DELETE Commands ...19-22

A Master Files and Diagrams...A-1
Creating Sample Data Sources ..A-2
The EMPLOYEE Data Source ..A-3

The EMPLOYEE Master File ..A-4
The EMPLOYEE Structure Diagram...A-5

The JOBFILE Data Source..A-6
The JOBFILE Master File ..A-6
The JOBFILE Structure Diagram...A-6

The EDUCFILE Data Source ..A-7
The EDUCFILE Master File ..A-7
The EDUCFILE Structure Diagram...A-7

The SALES Data Source ...A-8
The SALES Master File ...A-8
The SALES Structure Diagram..A-9

The PROD Data Source...A-10
The PROD Master File...A-10
The PROD Structure Diagram..A-10

The CAR Data Source ...A-11
The CAR Master File ...A-11
The CAR Structure Diagram..A-12

 Contents

Creating Reports

The LEDGER Data Source ...A-13
The LEDGER Master File..A-13
The LEDGER Structure Diagram ..A-13

The FINANCE Data Source ..A-14
The FINANCE Master File ..A-14
The FINANCE Structure Diagram...A-14

The REGION Data Source ..A-15
The REGION Master File ..A-15
The REGION Structure Diagram ...A-15

The COURSES Data Source ...A-16
The COURSES Master File ...A-16
The COURSES Structure Diagram ..A-16

The EMPDATA Data Source ..A-17
The EMPDATA Master File ..A-17
The EMPDATA Structure Diagram...A-17

The EXPERSON Data Source...A-18
The EXPERSON Master File...A-18
The EXPERSON Structure Diagram..A-18

The TRAINING Data Source ..A-19
The TRAINING Master File ..A-19
The TRAINING Structure Diagram...A-19

The PAYHIST File..A-20
The PAYHIST Master File...A-20
The PAYHIST Structure Diagram ...A-20

The COMASTER File ...A-21
The COMASTER Master File..A-22
The COMASTER Structure Diagram ..A-23

The VideoTrk and MOVIES Data Sources ...A-24
VideoTrk Master File ...A-24
MOVIES Master File ...A-24
VideoTrk Structure Diagram..A-25
MOVIES Structure Diagram ..A-26

The VIDEOTR2 Data Source..A-26
The VIDEOTR2 Master File ..A-26
The VIDEOTR2 Access File..A-27
The VIDEOTR2 Structure Diagram...A-28

The Gotham Grinds Data Sources ...A-29
The GGDEMOG Data Source..A-29
The GGORDER Data Source...A-30
The GGPRODS Data Source ...A-31
The GGSALES Data Source ..A-32
The GGSTORES Data Source..A-33

Contents

 Information Builders

B Error Messages .. B-1
Accessing Error Files .. B-2
Displaying Messages Online ... B-3

C Syntax Summary ...C-1
TABLE Syntax Summary.. C-2
TABLEF Syntax Summary ... C-3
MATCH Syntax Summary .. C-4
FOR Syntax Summary... C-5

D Writing User-Coded Programs to Create HOLD Files ..D-1
Arguments Used in Calls to Programs That Create HOLD Files ..D-2

E Character Charts... E-1
Letters.. E-2
Numbers .. E-2
Punctuation.. E-3
Symbols... E-3
Accent Marks and Accented Letters.. E-4

Index ... I-1

Creating Reports 1-1

CHAPTER 1

Creating Tabular Reports

Topics:
• Requirements for Creating a Report

• Creating a Report Request

• The Parts of a Report Request

• Including Display Fields in a Report
Request

• Referring to Fields in a Report
Request

• Customizing a Report

• Changing the Format of a Report
Column

• Saving and Reusing Report Output

The FOCUS reporting language is a powerful tool for analyzing
and formatting information. The language is non-procedural—
that is, you only need to think about what information you want
to present in your report. For the most part, you can describe the
report in any order—the sequence of commands is not
important.

The simplest form of report that you can produce is a tabular
report—that is, a report whose information is arranged vertically
in columns. This is the basic report format, incorporating the
fundamental reporting concepts and command syntax. Most of
the other report formats build on these concepts and syntax.

Creating Tabular Reports

1-2 Information Builders

Requirements for Creating a Report
To create a report, only two things are required:

• Data. You need data from which to report. If the data is protected by an underlying
security system, you may need permission to report from the data source. In addition,
the server must be able to locate the data source. See the Developing Applications
manual for information on data source locations.

You can report from many different types of data sources (with variations for
different operating environments), including the following:

• Relational data sources, such as DB2, Teradata, and Oracle, and Sybase.

• Hierarchical data sources, such as IMS and FOCUS.

• Indexed data sources, such as ISAM and VSAM.

• Network data sources, such as CA-IDMS.

• Sequential data sources, both fixed-format and comma-delimited format.

• Multi-dimensional data sources, such as Fusion.

For a complete list, see your Describing Data manual.

• A data description. You need a Master File, which describes the data source from
which you are reporting. The Master File is a map of the segments in the data source
and all of the fields in each segment. For some types of data sources, the Master File
is supplemented by an Access File. See the Describing Data manual for information
on Master Files and Access Files.

By looking at the Master File, you can determine what fields are in the data source,
what they are named, and how they are formatted. You can also determine how the
segments in the data source relate to each other. Although you can create a very
simple report without this information, knowing the structure of the data source
enables you to generate creative and sophisticated reports.

You can supplement the information in the Master File by generating a picture of the
data source structure—that is, of how the data source segments relate to each other.
Use the following command:
CHECK FILE filename PICTURE RETRIEVE

In the picture, segments are shown in the order in which they are retrieved. Four
fields of each segment are displayed. For details, see Chapter 2, Displaying Report
Data.

 Creating a Report Request

Creating Reports 1-3

Creating a Report Request
You can use any text editor to create your report request. Using the text editor, you can
create ad hoc reports or create a report and save it as a stored procedure, enabling you to
edit the request at any time. Stored procedures are described in more detail in the
Developing Applications manual.

Beginning a Report Request
A report request begins with the TABLE FILE command and ends with the END
command. The commands and phrases between the beginning and end of a request define
the contents and format of a report. These parts of the request are optional; you only need
to include the commands and phrases that produce the report functions you want. For
example, you need only include a sorting phrase if you want your report to be sorted.

Syntax How to Begin a Report Request
To begin a report request, use the command
TABLE FILE filename

where:
filename

Specifies a data source for the report.

Example Issuing Report Requests
The following examples produce the same report:
1. TABLE FILE EMPLOYEE PRINT LAST_NAME BY DEPARTMENT
 END

2. TABLE FILE EMPLOYEE
 PRINT LAST_NAME
 BY DEPARTMENT
 END

3. TABLE
 FILE EMPLOYEE
 PRINT
 LAST_NAME BY DEPARTMENT
 END

Creating Tabular Reports

1-4 Information Builders

The output is:
DEPARTMENT LAST_NAME
---------- ---------

MIS SMITH
 JONES
 MCCOY
 BLACKWOOD
 GREENSPAN
 CROSS

PRODUCTION STEVENS
 SMITH
 BANNING
 IRVING
 ROMANS
 MCKNIGHT

Example Reporting With a Default Data Source
An alternate way to specify the file name is with the SET FILE command. SET FILE
establishes a default data source for all requests, as described in the Developing
Applications manual. The following sets the EMPLOYEE data source as the default:
SET FILE = EMPLOYEE

TABLE
PRINT CURR_SAL
BY DEPARTMENT
END

This alternative is useful when you wish to enter several report requests against the same
data source. Of course, you can still issue requests against other data sources simply by
specifying the file name in the request instead of relying upon the default name.

Requesting Help When Issuing a Report Request
If you issue report requests interactively at the command prompt, rather than from a
procedure, online error correction is provided with help text. For example, if you enter
TABLE FI EMPLOYEE

at the command prompt, the following error message displays:
(FOC001) THE NAME OF THE FILE OR THE WORD 'FILE' IS MISSING

Enter your correction at the REPLY prompt. For this example, the correct reply is:
FILE

However, if the information provided by the error message is not sufficient, issue
HELP

or
?

at the REPLY prompt for a more detailed explanation of the error.

Every process and command you enter is scanned, and a report is generated immediately
after you enter the END or RUN command.

When the value of the MESSAGE parameter is ON (the default value), the number of
records retrieved from the data source and the number of lines displayed in the report
displays at the beginning of each report.

 Creating a Report Request

Creating Reports 1-5

Completing a Report Request
To complete a report request, use the END or RUN command. These commands must be
typed on a line by themselves. To discontinue a report request without executing it, enter
the QUIT command.

If you plan to issue consecutive report requests against different data sources during one
session, use the END command.
You also have the option of using the RUN command to complete a report request. The
RUN command keeps the TABLE facility and the data source active for the duration of
the TABLE session. This is useful since you do not need to repeat the TABLE command
to produce another report using the same data source.

Selecting a Report Output Destination
Once you generate a report, you still need to display it. The following facilities are
available for displaying your report:

• On a screen. The Hot Screen facility enables you to search for report data, save parts
of the report to a file, and customize how your report scrolls on the screen. Unless
you specify otherwise, your reports automatically displays on the screen using the
Hot Screen facility.

• On paper. When you print your reports on paper, you can control how reports that
are too wide to fit on a single page are arranged on the supplementary pages—
repeating essential columns on each page—so that the context of the data on each
page is clear.

Of course, you can easily direct the same report to both the screen and the printer by
switching display modes and using the RETYPE command. Or you can choose not to
display your report at all, and instead store the results as a data source using the HOLD,
PCHOLD, SAVE, or SAVB command. For details see Chapter 11, Saving and Reusing
Report Output.

Creating Tabular Reports

1-6 Information Builders

The Parts of a Report Request
The commands you place in between the TABLE FILE command and the END
command of your report determine the contents of your report and how it will be
displayed. For example, you would enter sort commands to specify how and which fields
you want your data sorted by. You can define the contents of your report by:

• Displaying data. You can display data in your report by listing, summing, or
counting it. You can also perform more complex operations on it, such as finding the
highest value of a field and calculating the average sum of squares of all the values
of a field.

• Sorting a report. When you display information, you can sort it in almost any order
that you wish.

• Selecting records. You can specify which records will be selected for your report.

• Showing subtotals and totals. You can display subtotals and totals for the columns
in your report.

• Creating temporary fields. You can create temporary fields, deriving their values
from real fields, and include them in your report.

Displaying Data
Reporting, at the simplest level, retrieves field values from a data source and displays
these values. You can present these values in a number of ways:

• List each field value using the PRINT and LIST commands.

• Add all the values and display the sum using the SUM command (or its synonyms
ADD or WRITE).

• Count all the values and display the quantity using the COUNT command.

For more information, see Chapter 2, Displaying Report Data.

 The Parts of a Report Request

Creating Reports 1-7

Example Displaying Data
To report on salary information for each employee, and to include each employee’s ID,
last name, and current salary in the report, you could use the PRINT command to print
the EMP_ID, LAST_NAME, and CURR_SAL fields.
TABLE FILE EMPLOYEE
PRINT EMP_ID AND LAST_NAME AND CURR_SAL
END

Notice that each field named in the PRINT command has its own report column. The
column headings and formats come from the Master File.

The output is:

Sorting a Report
Sorting a report enables you to organize a column’s information in a chosen order. The
sort field (the field that controls the sorting order) is displayed at the left of the report.
Sort fields are displayed when their values change.

You use the BY phrase to sort information vertically down a column. Sometimes it is
more effective to display information horizontally, across a row. You can do this using
the ACROSS phrase. You can also combine the BY and ACROSS phrases to sort a report
down columns and across rows, creating a simple matrix.

For more information, see Chapter 4, Sorting Tabular Reports.

Creating Tabular Reports

1-8 Information Builders

Example Sorting Report Columns
If you want to sort columns by employee name, you could issue the following request:
TABLE FILE EMPLOYEE
PRINT EMP_ID AND CURR_SAL
BY LAST_NAME
END

The output is:
PAGE 1

LAST_NAME EMP_ID CURR_SAL
--------- ------ --------

BANNING 119329144 $29,700.00
BLACKWOOD 326179357 $21,780.00
CROSS 818692173 $27,062.00
GREENSPAN 543729165 $9,000.00
IRVING 123764317 $26,862.00
JONES 117593129 $18,480.00
MCCOY 219984371 $18,480.00
MCKNIGHT 451123478 $16,100.00
ROMANS 126724188 $21,120.00
SMITH 112847612 $13,200.00
 119265415 $9,500.00
STEVENS 071382660 $11,000.00

The sort field (the field that controls the sorting order) is displayed at the left of the
report. Note that two rows of the report are assigned to the sort value SMITH because
there are two employees named Smith. Sort fields are displayed when their values
change.

 The Parts of a Report Request

Creating Reports 1-9

Example Sorting Report Rows
If you want to determine the sum of the total annual salaries in each department, you can
issue the following request:
TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS DEPARTMENT
END

The output is:

Example Sorting by Rows and Columns
If you want to sum employees’ current salaries across department and by job code, you
can issue the following request:
TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS DEPARTMENT
BY CURR_JOBCODE
END

The output is:

Creating Tabular Reports

1-10 Information Builders

Selecting Records
When you generate a report, you may not want to include every record. Selecting records
enables you to define a subset of the data source based on your criteria and then report on
that subset. Your selection criteria can be as simple or complex as you wish.

For more information, see Chapter 5, Selecting Records for Your Report.

Example Selecting Records
Suppose that you want to report on the salaries of employees earning more than $20,000
a year. You can select the records for these employees using the WHERE phrase:
TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME
WHERE CURR_SAL GT 20000
END

The output is:

Showing Subtotals and Totals
To help interpret detailed information in a report, you can summarize numeric
information using row and column totals, grand totals, and subtotals. You can use these
summary lines to clarify or highlight information in numeric or matrix reports.

For more information, see Chapter 7, Including Totals and Subtotals.

 The Parts of a Report Request

Creating Reports 1-11

Example Showing Subtotals and Totals
In your report on employee salaries, you might want to show each department’s total
salary expense.
TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY DEPARTMENT BY LAST_NAME
ON DEPARTMENT SUBTOTAL
END

The output is:

Creating Tabular Reports

1-12 Information Builders

Creating Temporary Fields
When you create a report, you are not limited to the fields that already exist in the data
source. You can create new, temporary fields that are based on the values of existing
fields. A temporary field can be independent of the report request. Once a temporary field
is defined, you can use it in subsequent report requests within the same session. You can
also create temporary fields within a particular report request. For details, see Chapter 6,
Creating Temporary Fields.
In addition, you can define temporary fields in a Master File using the DEFINE attribute.
For details, see the Describing Data manual.

Example Creating Temporary Fields
If you want to include each employee’s monthly salary in a report, and the annual salary
is already stored in the CURR_SAL field, you could define a temporary field whose
value is one-twelfth the value of CURR_SAL. You simply issue a DEFINE command
prior to issuing the report request.
DEFINE FILE EMPLOYEE
MONTHLY_SAL = CURR_SAL/12;
END

TABLE FILE EMPLOYEE
PRINT EMP_ID AND MONTHLY_SAL AND CURR_SAL
END

The output is:

 Including Display Fields in a Report Request

Creating Reports 1-13

Including Display Fields in a Report Request
The maximum number of display fields you can include in a report request is
approximately 1024 (495 for MATCH requests). However, when adding fields to a
request it is important to be aware that the allowable number of fields includes all named
fields, whether printed or not, including data source fields, temporary fields (virtual fields
and calculated values), certain internal fields (for example, TABPAGENO), and fields
used in headings and footings. The total does not include sort fields.

This field limit is also affected by the combined length of fields in the request: that is, the
field limit represents the maximum number of fields allowed when each field has the
smallest length possible (A4 ACTUAL). Longer field lengths reduce the total number of
printable fields.

When you create a report, the fields specified in the request are stored in a 32K (3956
bytes for MATCH requests) data area. The capacity of the data area is affected by a
number of factors:

• Every field is rounded up to a full word boundary (a multiple of 4).

• Every field is associated with a four-byte counter field, which affects the total
number of bytes in this data area.

• Field prefixes and formatting options impact the available data area.

If the combined length of the display fields in the data area exceeds the maximum
capacity, an error message displays. To correct the problem, adjust the number or lengths
of the fields in the request.

Referring to Fields in a Report Request
When creating a report, you refer to fields in several parts of the request−for example, in
display commands (PRINT, SUM, etc.), in sort phrases (BY, ACROSS), and in selection
criteria (WHERE, WHERE TOTAL, IF).

Several methods are available for referring to a field. You can:

• Refer to individual fields by using the alias specified in the Master File, referring to
the name defined in the Master File, or using the shortest unique truncation of the
field name or alias. For details, see Referring to an Individual Field on page 1-14.

• Refer to fields using long and qualified field names. For details, see Referring to
Fields Using Long and Qualified Field Names on page 1-14.

• Refer to all fields in a segment using only one field name. For details, see Referring
to All of the Fields in a Segment on page 1-16.

You can also view a list of all the fields that are included in the currently active data
source, or a specified Master File. For details, see Displaying a List of Field Names on
page 1-16 and Listing Field Names, Aliases, and Format Information on page 1-17.

Creating Tabular Reports

1-14 Information Builders

Referring to an Individual Field
You can refer to an individual field in any one of the following ways:

• Using the field name defined in the Master File.

• Using the alias (the field name’s synonym) defined in the Master File.

• Using the shortest unique truncation of the field name or the alias. When a truncation
is used, it must be unique; if it is not unique, an error message is displayed.

Example Referring to an Individual Field
In the following requests, DEPARTMENT is the complete field name, DPT is the alias,
and DEP is a unique truncation of DEPARTMENT. All these examples produce the same
output.
1. TABLE FILE EMPLOYEE
 PRINT DEPARTMENT
 END

2. TABLE FILE EMPLOYEE
 PRINT DPT
 END

3. TABLE FILE EMPLOYEE
 PRINT DEP
 END

Note: If you use a truncation that is not unique, the following message will appear:
(FOC016) THE TRUNCATED FIELDNAME IS NOT UNIQUE : D

Referring to Fields Using Long and Qualified Field Names
Field names and aliases have a maximum length of 66 characters, including up to two
qualifiers and qualification characters. The names you assign to temporary fields may
also be up to 66 characters. However, text fields and indexed field names in Master Files
are limited to 12 characters; although the aliases for text and indexed fields may be up to
66 characters. Field names are always displayed as column titles in reports, unless a
TITLE attribute or an AS phrase is used to provide an alternative name. For related
information see Chapter 9, Customizing Tabular Reports.

You may use the file name, segment name, or both as a qualifier for a specified field.
This is useful when structures contain duplicate field names. All referenced field names
and aliases may be qualified.

 Referring to Fields in a Report Request

Creating Reports 1-15

Syntax How to Activate Long and Qualified Field Names
The SET FIELDNAME command enables you to activate long (up to 66 characters) and
qualified field names.
SET FIELDNAME = fieldname

where:
fieldname

Specifies the activation status of long and qualified field names. Valid identifiers
include:
NEWS specifies that 66-character and qualified field names are supported; the
maximum length is 66 characters. NEW is the default value.
NOTRUNC supports the 66-character maximum; does not permit unique truncations of
field names.
OLD specifies that 66-character and qualified field names are not supported; the
maximum length is 12 characters. The limit may be different for some types of
non-FOCUS data sources.

Example Using a Qualified Field Name to Refer to a Field
EMPLOYEE.EMPINFO.EMP_ID

Is the fully-qualified name of the field EMP_ID in the EMPINFO segment of the
EMPLOYEE file. The maximum of 66 characters includes the name of the field or alias,
plus an eight-character maximum for field qualifiers (Master File name and segment
name) and two delimiting characters (periods).

Reference Usage Notes for Long and Qualified Field Names
? SET displays the current value of FIELDNAME. In addition, a Dialogue Manager
variable called &FOCFIELDNAME is available. &FOCFIELDNAME may have a value
of NEW, OLD, or NOTRUNC.

When the value of FIELDNAME is changed within a session, JOIN, and DEFINE
commands are affected as follows:

• When you change from a value of OLD to a value of NEW, all JOIN and DEFINE
commands are cleared.

• When you change from a value of OLD to NOTRUNC, all JOIN and DEFINE
commands are cleared.

• When you change from a value of NEW to OLD, all JOIN and DEFINE commands
are cleared.

• When you change from a value of NOTRUNC to OLD, all JOIN and DEFINE
commands are cleared.

All other changes to the FIELDNAME value have no effect on JOIN and DEFINE
commands.

For additional information about using qualified field names in report requests, see the
Describing Data manual.

Creating Tabular Reports

1-16 Information Builders

Referring to All of the Fields in a Segment
If you want to generate a report that displays all of a segment’s fields, you can refer to the
complete segment without specifying every field. You only need to specify one field in
the segment—any field will do—prefixed with the SEG. operator.

Example Referring to All Fields in a Segment
The segment PRODS01in the GGPRODS Master File contains the PRODUCT_ID,
PRODUCT_DESCRIPTION, VENDOR_CODE, VENDOR_NAME,
PACKAGE_TYPE, SIZE, and UNIT_PRICE fields.
SEGMENT=PRODS01
FIELDNAME = PRODUCT_ID
FIELDNAME = PRODUCT_DESCRIPTION
FIELDNAME = VENDOR_CODE
FIELDNAME = VENDOR_NAME
FIELDNAME = PACKAGE_TYPE
FIELDNAME = SIZE
FIELDNAME = UNIT_PRICE

To write a report that includes data from every field in the segment, you can issue either
of the following requests:
1. TABLE FILE GGPRODS
 PRINT PRODUCT_ID AND PRODUCT_DESCRIPTION AND VENDOR_CODE AND
VENDOR_NAME AND PACKAGE_TYPE AND SIZE AND UNIT_PRICE
 END

2. TABLE FILE GGPRODS
 PRINT SEG.PRODUCT_ID
 END

Displaying a List of Field Names
If you want to see a list of all the fields that are included in the currently active data
source, you can issue the ?F field name query.

This is useful if you need to refer to a list of field names, or need to check the spelling of
a field name, without exiting from the request process. It will also show you the entire
66-character field name. More information on all of the query (?) commands appears in
the Developing Applications manual.

 Customizing a Report

Creating Reports 1-17

Listing Field Names, Aliases, and Format Information
The ?FF query displays field name, alias, and format information for a specified Master
File, grouped by segment. Like the ?F query, you may issue ?FF:

• From the command line.

• When entering a TABLE or GRAPH request online.

If your software supports MODIFY or FSCAN, you can also issue ?FF from these
facilities.

Note:

• If duplicate field names match a specified string, the display includes the field name
qualified by the segment name with both ?F and ?FF.

• Field names longer than 31 characters are truncated in the display, and a caret (>) is
appended in the 32nd position to indicate that the field name is longer than the
display.

• When issuing a request in the Terminal Operator Environment, the ?F query
activates the Fields window. However, ?FF makes the Output window active.

Customizing a Report
There are two aspects of a successful report: the information presented and how it is
presented. A report that identifies related groups of information and draws attention to
important facts will be more effective than one that simply shows columns of data.

When you have selected the data that is going to be included in your report and how you
want it to be displayed, you can then continue developing your report with custom
formatting. There are many things you can add to your request in order to make your
report more effective. You can:

• Add titles, headings, and footings, change column titles with the AS phrase, create
headings and footings for different levels of the report—including each sort group,
each page, and the entire report. For details, see Chapter 9, Customizing Tabular
Reports.

• Change the format of a field and the justification of a column title. For details, see
Changing the Format of a Report Column on page 1-19.

• Determine the width of a report column. For details, see Determining the Width of a
Report Column on page 1-24.

• Dynamically control the display of subtotals, headings, and footings based on
conditions you define. For details, see Chapter 9, Customizing Tabular Reports.

• Highlight a group of related information and separate it from other groups by
inserting blank lines or dashes between each group. For details, see Chapter 9,
Customizing Tabular Reports.

Creating Tabular Reports

1-18 Information Builders

Example Customizing the Presentation
The following report incorporates many customization features, such as renaming column
titles, creating headings and footings for sections of the report, and dynamically
controlling the display of headings and footings.
TABLE FILE EMPLOYEE
HEADING CENTER
"Departmental Salary Report </1"
PRINT CURR_JOBCODE AS 'Job Code'
BY DEPARTMENT AS 'Department'
BY LAST_NAME AS 'Last Name'
BY CURR_SAL AS 'Current,Salary'
ON CURR_SAL SUBFOOT
"<13 *** WARNING: <LAST_NAME 's salary exceeds recommended guidelines."
WHEN CURR_SAL GT 27000;
ON DEPARTMENT SUBFOOT
"<13 Total salary expense for the <DEP dept is: <ST.CURR_SAL"
ON DEPARTMENT SKIP-LINE
END

 Changing the Format of a Report Column

Creating Reports 1-19

Changing the Format of a Report Column
A field’s format is defined in the Master File. You can, however, change the format of a
report column. Column titles in a report can be left justified, right justified, or centered.
By default, column titles for alphanumeric fields are left justified, and column titles for
numeric and date fields are right justified.

For details see Chapter 9, Customizing Tabular Reports.

Example Changing a Column’s Format
The UNIT_PRICE field has a format of D7.2 as defined in the GGPRODS Master File.
To add a floating dollar sign to the display, the field format can be redefined as follows:
TABLE FILE GGPRODS
PRINT UNIT_PRICE/D7.2M
END

The output is:
 Unit
 Price

 $58.00
 $81.00
 $76.00
 $13.00
 $17.00
 $28.00
 $26.00
 $96.00
$125.00
$140.00

Creating Tabular Reports

1-20 Information Builders

Example Using Multiple Format Specifications
The following request illustrates column title justification with a format specification, a
BY field specification, and an AS phrase specification:
TABLE FILE CAR
PRINT MODEL/A10 STANDARD/A15/R AS 'RJUST,STANDARD' BY CAR/C
WHERE CAR EQ 'JAGUAR' OR 'TOYOTA'
END

The output is:

Reference Usage Notes for Changing Column Format
• Each time you reformat a column, the field is counted twice against the limit for

display fields in a single report. For details, see Including Display Fields in a Report
Request on page 1-13.

• If you create an extract file from the report—that is, a HOLD, PCHOLD, SAVE, or
SAVB file—the extract file will contain fields for both the original format and the
redefined format, unless HOLDLIST=PRINTONLY. Extract files are described in
Chapter 11, Saving and Reusing Report Output.

• Format redefinition may not be used on a field in a BY or ACROSS phrase or with
SUM CNT.fieldname.

• When the size of a word in a text field instance is greater than the format of the text
field in the Master File, the word wraps to a second line, and the next word begins on
the same line.

• You may specify justification for display fields, BY fields, and ACROSS fields. For
ACROSS fields, data values, not column titles, are justified as specified.

• For display commands only, the justification parameter may be combined with a
format specification. The format specification may precede or follow the justification
parameter.

• If a title is specified with an AS phrase or in the Master File, that title will be
justified as specified in FORMAT.

• When multiple ACROSS fields are requested, justification is performed on the
lowest ACROSS level only. All other justification parameters for ACROSS fields
are ignored.

 Changing the Format of a Report Column

Creating Reports 1-21

Field-Based Reformatting
Field-based reformatting allows you to apply different formats to each row in a single
report column by using a field to identify the format that applies to each row. For
example, you can use this technique to apply the appropriate decimal currency formats
when each row represents a different country.

The field that contains the format specifications can be:

• A real field in the data source.

• A temporary field created with a DEFINE command.

• A DEFINE in the Master File.

• A COMPUTE command. If the field is created with a COMPUTE command, the
command must appear in the request prior to using the calculated field for
reformatting.

The field that contains the formats must be alphanumeric and be at least eight characters
in length. Only the first eight characters are used for formatting.

The field-based format may specify a length longer than the length of the original field.
However, if the new length is more than one-third larger than the original length, the
report column width may not be large enough to hold the value (indicated by asterisks in
the field).

You can apply a field-based format to any type of field. However, the new format must
be compatible with the original format:

• A numeric field can be reformatted to any other numeric format with any edit format
options.

• An alphanumeric field can be reformatted to a different length.

• Any date field can be reformatted to any other date format type.

• Any date-time field can be reformatted to any other date-time format.

If the field-based format is invalid or specifies an impermissible type conversion, the
field displays with plus signs (++++) on the report output.

Creating Tabular Reports

1-22 Information Builders

Syntax How to Define and Apply a Format Field
• With a DEFINE command:

DEFINE FILE filename
format_field/A8 = expression;
END

• In a Master File:
DEFINE format_field/A8 = expression; $

• In a request:
COMPUTE format_field/A8 = expression;

where:
format_field

Is the name of the field that contains the format for each row.
expression

Is the expression that assigns the format values to the format field.

Once the format field is defined, you can apply it in a report request:
TABLE FILE filename
display fieldname/format_field[/just]
END

where:
display

Is any valid display command.
fieldname

Is a field in the request to be reformatted.
format_field

Is the name of the field that contains the formats. If the name of the format field is
the same as an explicit format, the explicit format will be used. For example, a field
named I8 cannot be used for field-based reformatting because it will be interpreted as
the explicit format I8.

just

Is a justification option, L, R, or C. The justification option can be placed before or
after the format field, separated from the format by a slash.

 Changing the Format of a Report Column

Creating Reports 1-23

Example Displaying Different Decimal Places for Currency Values
DEFINE FILE CAR
CFORMAT/A8 = DECODE COUNTRY('ENGLAND' 'D10.1' 'JAPAN' 'D10' ELSE 'D10.2');
END

TABLE FILE CAR
SUM SALES/CFORMAT/C DEALER_COST/CFORMAT
BY COUNTRY
END

The output is:
COUNTRY SALES DEALER_COST
------- --------- -----------
ENGLAND 12,000.0 37,853.0
FRANCE .00 4,631.00
ITALY 30,200.00 41,235.00
JAPAN 78,030 5,512
W GERMANY 88,190.00 54,563.00

Reference Usage Notes for Field-Based Reformatting
• Field-based reformatting is supported for TABLE and TABLEF. It works with

StyleSheets, joins, and for any type of data source.

• Field-based reformatting is not supported for MODIFY, Maintain, MATCH,
GRAPH, RECAP, FOOTING, HEADING, or text fields.

• Although you can use a DEFINE or COMPUTE command to create the format field,
you cannot apply a field-based format to a calculated or virtual field.

• Field-based reformatting cannot be used on a BY sort field. It does work with an
ACROSS field.

• If a report column is produced using field-based reformatting, the format used for a
total or subtotal of the column will be taken from the previous detail line.

• Explicit reformatting creates two display fields internally for each field that is
reformatted. Field-based reformatting creates three display fields.

• Field-based reformatting works for alphanumeric fields in a HOLD file, although
three fields will be stored in the file for each field that is reformatted. To prevent the
extra fields from being propagated to the HOLD file, specify SET
HOLDLIST=PRINTONLY.

• If the number of decimal places varies between rows, the decimal points will not be
aligned in the report output.

Creating Tabular Reports

1-24 Information Builders

Determining the Width of a Report Column
The width of a report column is set to the width of the column title, or the corresponding
field display length, whichever is wider. You can change the width by reformatting the
column or editing the title.

For example, the LAST_NAME field is defined with a format of A15 in the Master File,
while its field name is only nine characters wide, so the LAST_NAME column in a report
will be 15 characters wide.

Furthermore, two spaces are placed between columns on the printed report unless the
report width is too wide, in which case one space is inserted between columns. If the
report is still too wide, it will need to be paneled.

Note: The default spacing can be overridden by using IN or OVER. You can also use
SET SPACES to control column spacing. For more information see Chapter 9,
Customizing Tabular Reports.

Saving and Reusing Report Output
After generating a report request, there are many things you can do with it. You can
create an output file using the HOLD, PCHOLD, SAVE, and SAVB commands. This
allows you to store your report as a data source on which you can make additional
queries. This capability is especially helpful for creating a subset of your data and for
generating multi-step reports. You can also format the report output for:

• Display as (or in) a web page, as a printed document, or in a text document.

• Processing in another application, such as a spreadsheet, a database, a word
processor, or a 3GL program.

• Distribution to another location, such as a PC or a browser.

For details, see Chapter 11, Saving and Reusing Report Output.

Creating Reports 2-1

CHAPTER 2

Displaying Report Data

Topics:

• Displaying Individual Values

• Adding Values

• Counting Values

• Manipulating Display Fields With
Prefix Operators

• Manipulating Display Field Values in
a Sort Group

Reporting, at the simplest level, retrieves field values from a
data source and displays those values. There are three ways to
do this:

• List each field value (PRINT and LIST commands).

• Add all the values and display the sum (SUM command).

• Count all the values and display the quantity (COUNT
command).

These four display commands—PRINT, LIST, SUM, and
COUNT—are also known as verbs. These commands are
flexible; you can report from several fields using a single
command and include several different display commands in a
single report request.

Displaying Report Data

2-2 Information Builders

Syntax How to Use Display Commands in a Request
display [THE] fieldname1 [AND] [THE] fieldname2 ...

OR

display *

where:

display

Is the PRINT, LIST, SUM, or COUNT command. WRITE and ADD are synonyms
of SUM and can be substituted for it.

fieldname

Is the name of the field to be displayed in the report.

The maximum number of display fields your report can contain is determined by a
combination of factors. For details, see Chapter 1, Creating Tabular Reports.

The fields appear in the report in the same order in which they are specified in the
report request. For example, the report column for fieldname1 will appear first,
followed by the report column for fieldname2.

The field to be displayed is also known as the display field.

AND

Is optional; used to enhance readability. It can be used between any two field names
and does not affect the report.

THE

Is optional; used to enhance readability. It can be used before any field name and
does not affect the report.

*

Applies the display command to every field in the left path of the data source.

 Displaying Individual Values

Creating Reports 2-3

Displaying Individual Values
The display commands LIST and PRINT list the individual values of the fields you
specify in your report request. LIST numbers the items in the report. PRINT does not
number the items.

You can easily display all of the fields in the data source by specifying an asterisk (*)
wildcard instead of a specific field name, as described in Displaying All Fields on page
2-5.

For all PRINT and LIST requests, the number of records retrieved and the number of
lines displayed are the same. In addition, there is no order to the report rows. The PRINT
and LIST commands simply display all the values of the selected fields found in the data
source, in the order in which they are accessed. The order in which data is displayed may
be affected by the AUTOPATH setting. For more information, see Chapter 15,
Improving Report Processing and the documentation on SET parameters in the
Developing Applications manual.

In general, when using PRINT or LIST, the order of the values displayed in the report
depends on whether the field is a key field or not, as described in the Describing Data
manual.

Alternatively, you can sort the values using the BY or ACROSS sort phrases. When LIST
is used in a request that includes a sort phrase, the list counter is reset to 1 every time the
value in the outermost sort field changes. See Chapter 4, Sorting Tabular Reports, for
more information on sorting.

Displaying Report Data

2-4 Information Builders

Example Displaying Individual Field Values
To display the values of individual fields, use the PRINT command. The following
request displays the values of two fields LAST_NAME and FIRST_NAME for all
employees.

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
END

The output is:

Example Listing Records
To number the records in a report, use the LIST command.

TABLE FILE EMPLOYEE
LIST LAST_NAME AND FIRST_NAME
END

The output is:

 Displaying Individual Values

Creating Reports 2-5

Displaying All Fields
You can easily display all of the fields in the left path of the data source by specifying an
asterisk (*) wildcard instead of a specific field name. For additional information about
Master File structures and segment paths, including left paths and short paths, see the
Describing Data manual.

Example Displaying All Fields
The following request produces a report displaying all of the fields in the EDUCFILE
data source.

TABLE FILE EDUCFILE
LIST *
END

The output is:

LIST COURSE_CODE COURSE_NAME DATE_ATTEND EMP_ID
 --- ----------- ----------- ----------- ------
 1 101 FILE DESCRPT & MAINT 83/01/04 212289111
 2 101 FILE DESCRPT & MAINT 82/05/25 117593129
 3 101 FILE DESCRPT & MAINT 82/05/25 071382660
 4 101 FILE DESCRPT & MAINT 81/11/15 451123478
 5 101 FILE DESCRPT & MAINT 81/11/15 112847612
 6 102 BASIC REPORT PREP NON-PROG 82/07/12 326179357
 7 103 BASIC REPORT PREP FOR PROG 83/01/05 212289111
 8 103 BASIC REPORT PREP FOR PROG 82/05/26 117593129
 9 103 BASIC REPORT PREP FOR PROG 81/11/16 112847612
 10 104 FILE DESC & MAINT NON-PROG 82/07/14 326179357
 11 106 TIMESHARING WORKSHOP 82/07/15 326179357
 12 202 WHAT'S NEW IN FOCUS 82/10/28 326179357
 13 301 DECISION SUPPORT WORKSHOP 82/09/03 326179357
 14 107 BASIC REPORT PREP DP MGRS 82/08/02 818692173
 15 302 HOST LANGUAGE INTERFACE 82/10/21 818692173
 16 108 BASIC RPT NON-DP MGRS 82/10/10 315548712
 17 108 BASIC RPT NON-DP MGRS 82/08/24 119265415
 18 201 ADVANCED TECHNIQUES 82/07/26 117593129
 19 203 FOCUS INTERNALS 82/10/28 117593129

Displaying Report Data

2-6 Information Builders

Displaying the Structure of a Multi-Path Data Source
When using display commands, it is important to understand the structure of the data
source and the relationship between segments since these factors will affect your results.
You can use the CHECK command’s PICTURE option to display a diagram of the data
source structure defined by the Master File.

Example Displaying the Structure of a Multi-Path Data Source
To display the structure of the EMPLOYEE data source, which is joined to the JOBFILE
and EDUCFILE data sources, issue the following command:

CHECK FILE EMPLOYEE PICTURE RETRIEVE

This command adds the numbers that display at the top left of each segment, indicating
the retrieval order of the segments, and generates the following picture. Note that a
unique segment such as FUNDTRAN is treated as a logical addition to the parent
segment for retrieval. FUNDTRAN and SECSEG are unique segments and are, therefore,
treated as part of their parents.

 Displaying Individual Values

Creating Reports 2-7

Displaying Report Data

2-8 Information Builders

Example Displaying Fields From a Multi-Path Data Source
The following request produces a report displaying all of the fields on the left path of the
EMPLOYEE data source.

TABLE FILE EMPLOYEE
PRINT *
END

Due to the size of the report the above request produces, we will list only the fields for
which all instances will be printed. In the report, these fields would be displayed from
left to right starting with EMP_ID.

EMP_ID
LAST_NAME
FIRST_NAME
HIRE_DATE
DEPARTMENT
CURR_SAL
CURR_JOBCODE
ED_HRS
BANK_NAME
BANK_CODE
BANK_ACCT
EFFECT_DATE
DAT_INC
PCT_INC
SALARY
JOBCODE
JOBCODE
JOB_DESC
SEC_CLEAR
SKILLS
SKILL_DESC

Each field in this list appears in segments on the left path of the EMPLOYEE data
source. To view the structure of the EMPLOYEE data source, see Displaying the
Structure of a Multi-Path Data Source on page 2-6.

Tip:

In some environments the following warning is displayed whenever you use PRINT * with
a multi-path data source, to remind you that PRINT * will display only the left path.

(FOC757) WARNING. YOU REQUESTED PRINT * OR COUNT * FOR A MULTI-PATH
FILE

 Adding Values

Creating Reports 2-9

Adding Values
SUM, WRITE, and ADD sum the values of a numeric field. The three commands are
synonyms; they can be used interchangeably, and every reference to SUM in this manual
also refers to WRITE and ADD.

When you use SUM, multiple records are read from the data source, but only one
summary line is produced. If you use SUM with a non-numeric field—such as an
alphanumeric, text, or date field—SUM will not add the values; instead, it will display
the last value retrieved from the data source.

For SUM, WRITE, and ADD syntax see How to Use Display Commands in a Request on
page 2-2.

Example Adding Values
This request adds all the values of the field CURR_SAL:

TABLE FILE EMPLOYEE
SUM CURR_SAL
END

The output is:

The number of lines in the report is less than the number of records from the data source.
It took a total of 12 records to get the results in the report, but only one summary line is
displayed.

Displaying Report Data

2-10 Information Builders

Example Adding Non-Numeric Values
This request attempts to add non-numeric fields. Any request for aggregation on
non-numeric data returns the last record retrieved from the data source.

TABLE FILE EMPLOYEE
SUM LAST_NAME AND FIRST_NAME
END

The output is:

Note that any request for aggregation on a date format field also returns the last record
retrieved from the data source.

Tip:

If you are using the external sorting product DFSORT, you can set the SUMPREFIX
parameter to FST or LST to control the sort order. For details, see Chapter 4, Sorting
Tabular Reports.

Counting Values
The COUNT command counts the number of instances that exist for a specified field.
The COUNT command is particularly useful combined with the BY phrase, which is
discussed in Chapter 4, Sorting Tabular Reports.

COUNT counts the instances of data in a data source, not the distinct values.

Note: By default, a COUNT field is a five-digit integer. You can reformat it using the
COMPUTE command and change its field length using the SET COUNTWIDTH
command. For details about the COMPUTE command, see Chapter 6, Creating
Temporary Fields. For information about SET COUNTWIDTH, see the Developing
Applications manual.

 Counting Values

Creating Reports 2-11

Example Counting Values
To determine how many employees are in the EMPLOYEE data source, you can count
the instances of EMP_ID, the employee identification number.

TABLE FILE EMPLOYEE
COUNT EMP_ID
END

The output is:

Example Counting Values With a Sort Phrase
To count the instances of EMP_ID for each department, use this request:

TABLE FILE EMPLOYEE
COUNT EMP_ID
BY DEPARTMENT
END

The output indicates that of the 12 EMP_IDs in the data source, six are from the MIS
department and six are from the PRODUCTION department:

 EMP_ID
 DEPARTMENT COUNT
 ---------- ------
 MIS 6
 PRODUCTION 6

Displaying Report Data

2-12 Information Builders

Example Counting Instances of Data
The following example counts the instances of data in the LAST_NAME,
DEPARTMENT, and JOBCODE fields in the EMPLOYEE data source.

TABLE FILE EMPLOYEE
COUNT LAST_NAME AND DEPARTMENT AND JOBCODE
END

The output is:
LAST_NAME DEPARTMENT JOBCODE
COUNT COUNT COUNT
--------- ---------- -------
 12 12 19

The EMPLOYEE data source contains data on 12 employees, with one instance for each
LAST_NAME. While there are only two values for DEPARTMENT, there are 12
instances of the DEPARTMENT field because each employee works for one of the two
departments. Similarly, there are 19 instances of the JOBCODE field because employees
can have more than one job code during their employment.

Counting Segment Instances
You can easily count the instances of the lowest segment in the left path of a data source
by specifying an asterisk (*) wildcard instead of a specific field name. In a
single-segment data source, this effectively counts all instances in the data source.

COUNT * accomplishes this by counting the values of the first field in the segment.
Instances with a missing value in the first field are not counted (when SET
MISSING=ON).

Segment instances in short paths are not counted by COUNT *, regardless of the value of
the ALL parameter of the SET command.

For more information about missing values, short paths, and the SET ALL command, see
Chapter 12, Handling Records With Missing Field Values.

 Expanding Byte Precision for COUNT and LIST

Creating Reports 2-13

Example Counting Segments From a Multi-Path Data Source
The following request counts the number of instances of the SKILLSEG segment of the
EMPLOYEE data source.

TABLE FILE EMPLOYEE
COUNT *
END

The output is:

COUNT * counts the number of instances of the SKILLSEG segment, which is the
lowest segment in the left path of the EMPLOYEE data source structure (that is, the
EMPLOYEE data source joined to the JOBFILE and EDUCFILE data sources). You can
see a picture of the path structure in Displaying the Structure of a Multi-Path Data
Source on page 2-6.

Tip:

In some environments the following warning is displayed if you use COUNT * with a
multi-path data source (such as EMPLOYEE in the above example):

(FOC757) WARNING. YOU REQUESTED PRINT * OR COUNT * FOR A MULTI-PATH
FILE

Expanding Byte Precision for COUNT and LIST
The COUNT and LIST commands can optionally be expanded from 5 to 9 characters on
display. This internally reformats COUNT and LIST from I5 to I9.

If the number of records retrieved for a field exceeds 99,999 (5 bytes), asterisks are
displayed in the report to indicate an overflow condition. You can increase the display to
allow a COUNT or LIST as large as 999,999,999 (9 bytes).

Displaying Report Data

2-14 Information Builders

Syntax How to Set the Precision for COUNT and LIST
SET COUNTWIDTH = {OFF|ON}

where:

OFF

Displays five characters (bytes) for COUNT and LIST counter values. Asterisks are
displayed if the number of records retrieved for a field exceeds 5 characters. OFF is
the default.

ON

Displays up to nine characters (bytes) for COUNT and LIST counter values.
Asterisks are displayed if the value exceeds 9 characters.

Example Setting Precision for COUNT and LIST
The following example shows the COUNT command with SET COUNTWIDTH = OFF:

TABLE FILE filename
COUNT Fldxx
BY Fldyy
END

 FLDxx

Fldyy COUNT

value *****

The following example shows the COUNT command with SET COUNTWIDTH = ON:

TABLE FILE filename
COUNT Fldxx
BY Fldyy
END

 FLDxx

Fldyy COUNT

value 999999999

Note: This feature will affect the width of a report when COUNTWIDTH is set to ON.
Calculating the width of a report will now require an additional four display positions for
each COUNT and LIST column.

 Manipulating Display Fields With Prefix Operators

Creating Reports 2-15

Manipulating Display Fields With Prefix Operators
You can use prefix operators to perform calculations directly on the values of fields. For
example, you can:

• Calculate the average of field values.

• Determine the minimum or maximum of field values.

• Calculate the percent value of field and count values.

• Determine the square and average of squared values.

• Retrieve the first or last record.

• Sum and count numeric values.

• Count the number of distinct (unique) values.

For a list of prefix operators and their functions see Functions You Can Perform With
Prefix Operators on page 2-16.

Syntax How to Use Prefix Operators
Each prefix operator is applied to a single field and affects only that field.

{SUM|COUNT} prefix.fieldname

where:

prefix

Is any prefix operator.

fieldname

Is the name of the field to be displayed in the report.

Reference Usage Notes for Prefix Operators
• Because PRINT and LIST display individual field values, not an aggregate value,

they are not used with prefix operators, except TOT.

• To sort by the results of a prefix command, use the phrase BY TOTAL to aggregate
and sort numeric columns simultaneously. For details, see Chapter 4, Sorting
Tabular Reports.

• The WITHIN phrase is very useful when using prefixes. For details, see
Manipulating Display Field Values in a Sort Group on page 2-29.

• You can use the results of prefix operators in COMPUTE commands.

• With the exception of CNT. and PCT.CNT., resulting values have the same format
as the field against which the prefix operation was performed.

• Text fields can only be used with the FST., LST., and CNT. prefix operators.

Displaying Report Data

2-16 Information Builders

Reference Functions You Can Perform With Prefix Operators

Prefix Function

ASQ. Computes the average sum of squares for standard deviation in
statistical analysis.

AVE. Computes the average value of the field.

CNT. Counts the number of occurrences of the field.

CNT.DST. Counts the number of distinct values within a field when using
-REMOTE. For other modes of operation, this behaves like CNT.

DST. Determines the total number of distinct values in a single pass of a data
source.

FST. Generates the first physical instance of the field. Can be used with
numeric or text fields.

LST. Generates the last physical instance of the field. Can be used with
numeric or text fields.

MAX. Generates the maximum value of the field.

MIN. Generates the minimum value of the field.

PCT. Computes a field’s percentage based on the total values for the field.
The PCT operator can be used with detail as well as summary fields

PCT.CNT. Computes a field’s percentage based on the number of instances found.

RPCT. Computes a field’s percentage based on the total values for the field
across a row.

SUM. Sums the number of occurrences of the field.

TOT. Counts the occurrences of the field for use in a heading (includes
footings, subheads, and subfoots).

 Manipulating Display Fields With Prefix Operators

Creating Reports 2-17

Averaging Values of a Field
The AVE. prefix computes the average value of a particular field. The computation is
performed at the lowest sort level of the display command. It is computed as the sum of
the field values within a sort group divided by the number of records in that sort group. If
the request does not include a sort phrase, AVE. calculates the average for the entire
report.

Example Averaging Values of a Field
This request calculates the average number of education hours spent in each department.

TABLE FILE EMPLOYEE
SUM AVE.ED_HRS BY DEPARTMENT
END

The output is:

Averaging the Sum of Squared Fields
The ASQ. prefix computes the average sum of squares, which is a component of the
standard deviation in statistical analysis.

i
i=

n

x2

1
�
�

�
�

�

�
� /n

The ASQ. prefix is only supported for double-precision fields.

If the field format is packed, ASQ. is not supported.

If the field format is integer and you get a large set of numbers, the ASQ. result may be
negative as a result of field overflow.

Displaying Report Data

2-18 Information Builders

Example Averaging the Sum of Squared Fields
This request calculates the sum and the sum of squared fields for the DELIVER_AMT
field.

TABLE FILE SALES
SUM DELIVER_AMT AND ASQ.DELIVER_AMT
BY CITY
END

The output is:

Calculating Maximum and Minimum Field Values
The prefixes MAX. and MIN. produce the maximum and minimum values, respectively,
within a sort group. If the request does not include a sort phrase, MAX. and MIN.
produce the maximum and minimum values for the entire report.

Example Calculating Maximum and Minimum Field Values
This report request calculates the maximum and minimum values of SALARY.

TABLE FILE EMPLOYEE
SUM MAX.SALARY AND MIN.SALARY
END

The output is:

 Manipulating Display Fields With Prefix Operators

Creating Reports 2-19

Calculating Column and Row Percents
For each individual value in a column, PCT. calculates what percentage that field makes
up of the column’s total value. You can control how values are distributed down the
column by sorting the column using the BY phrase. The new column of percentages has
the same format as the original field.

You can also determine percentages for row values; for each individual value in a row
that has been sorted using the ACROSS phrase, the RPCT. operator calculates what
percentage it makes up of the row’s total value. The percentage values have the same
format as the original field.

Example Calculating Column Percents
To calculate each employee’s share of education hours, issue the following request:

TABLE FILE EMPLOYEE
SUM ED_HRS PCT.ED_HRS BY LAST_NAME
ON TABLE COLUMN-TOTAL
END

The output is:
 PCT
 LAST_NAME ED_HRS ED_HRS
 --------- ------ ------
 BANNING .00 .00
 BLACKWOOD 75.00 21.37
 CROSS 45.00 12.82
 GREENSPAN 25.00 7.12
 IRVING 30.00 8.55
 JONES 50.00 14.25
 MCCOY .00 .00
 MCKNIGHT 50.00 14.25
 ROMANS 5.00 1.42
 SMITH 46.00 13.11
 STEVENS 25.00 7.12

 TOTAL 351.00 100.00

Since PCT. and RPCT take the same format as the field, the column may not total exactly
100 because of the nature of floating point arithmetic.

Displaying Report Data

2-20 Information Builders

Example Calculating Row Percents
The following request calculates the total units sold for each product (UNIT_SOLD
column) and the percentage that total makes up in relation to the sum of all products sold
(RPCT.UNIT_SOLD column) in each city.

TABLE FILE SALES
SUM UNIT_SOLD RPCT.UNIT_SOLD
BY PROD_CODE
ACROSS CITY
END

Because the full report is too wide to display, a representative portion of the output is
shown here:

Because UNIT_SOLD has an integer format, the columns created by RPCT. also have
integer (I) formats. Therefore, individual percentages are truncated and the total
percentage is less than 100%. If you require precise totals, redefine the field with a
format that declares decimal places (D, F).

 Manipulating Display Fields With Prefix Operators

Creating Reports 2-21

Producing a Direct Percent of a Count
When counting occurrences in a file, a common reporting need is determining the
relative percentages of all found instances, which each count of a data value represents.
You can do this, for columns only, with the following syntax:

PCT.CNT.fieldname

The format is a decimal value of six digits with two decimal places (F6.2).

Example Producing a Direct Percent of a Count
This request illustrates the relative percentage of the values in the EMP_ID field for each
department.

TABLE FILE EMPLOYEE
SUM PCT.CNT.EMP_ID
BY DEPARTMENT
END

The output is:

Aggregating and Listing Unique Values
The distinct prefix operator (DST.) may be used to aggregate and list unique values of
any data source field. Similar in function to the SQL COUNT, SUM, and
AVG(DISTINCT col) column functions, it permits you to determine the total number of
distinct values in a single pass of the data source.

The DST. operator can be used with the SUM, PRINT or COUNT commands, and also in
conjunction with the aggregate prefix operators SUM., CNT., and AVE.

Displaying Report Data

2-22 Information Builders

Syntax How to Use the Distinct Operator
{command} DST.fieldname

or

SUM [operator].DST.fieldname

where:

command

Is SUM, PRINT, or COUNT.

DST.

Indicates the distinct operator.

fieldname

Indicates the display-field object or field name.

operator

Indicates SUM., CNT., or AVE.

Example Using the Distinct Operator
The procedure requesting a count of unique ED_HRS values is either:

TABLE FILE EMPLOYEE
SUM CNT.DST.ED_HRS
END

or

TABLE FILE EMPLOYEE
COUNT DST.ED_HRS
END

The output is:

COUNT
DISTINCT
ED_HRS

 9

Notice that the count excludes the second records for values 50.00, 25.00, and .0
resulting in nine unique ED_HRS values.

When used with PRINT, DST. acts in the same manner as a BY phrase. It can be attached
to several PRINT display fields, but not more than 32 (the current limit for BY sort
fields).

DST. display fields must precede all non-distinct display fields named by the PRINT
command. If this rule is not observed, the following error is displayed:

(FOC1855) DISTINCT FIELDS MUST PRECEDE THE NONDISTINCT ONES

 Manipulating Display Fields With Prefix Operators

Creating Reports 2-23

Reference Distinct Operator Limitations
• The following error occurs if you use the prefix operators CNT., SUM., and AVE.

with any other display command:

(FOC1853) CNT/SUM/AVE.DST CAN ONLY BE USED WITH AGGREGATION VERBS

• The following error occurs if you use DST. in a MATCH or TABLEF command:

(FOC1854) THE DST OPERATOR IS ONLY SUPPORTED IN TABLE REQUESTS

• The following error occurs if you code more than one DST. operator for the SUM
command:

(FOC1856) ONLY ONE DISTINCT FIELD IS ALLOWED IN AGGREGATION

• The following error occurs if you reformat a BY field (when used with the PRINT
command, the DST.fieldname becomes a BY field):

(FOC1862) REFORMAT DST.FIELD IS NOT SUPPORTED WITH PRINT

• The following error occurs if you use the DST. operator in an ACROSS or FOR
phrase:

(FOC1864) THE DST OPERATOR IS NOT SUPPORTED FOR ACROSS OR FOR

• The following error occurs if you use a multi-verb request, SUM DST.fieldname BY
field PRINT fld BY fld (a verb object operator used with the SUM command must be
at the lowest level of aggregation):

(FOC1867) DST OPERATOR MUST BE AT THE LOWEST LEVEL OF AGGREGATION

• The DST. operator may not be used as part of a HEADING or a FOOTING.

• TABLE requests that contain the DST. operator are not candidates for
AUTOTABLEF.

Displaying Report Data

2-24 Information Builders

Retrieving First and Last Records
FST. is a prefix that displays the first retrieved record selected for a given field. LST.
displays the last retrieved record selected for a given field.

When using the FST. and LST. prefix operators, it is important to understand how your
data source is structured.

• If the record is in a segment with values organized from lowest to highest (segment
type S1), the first logical record that the FST. prefix operator retrieves is the lowest
value in the set of values. The LST. prefix operator would, therefore, retrieve the
highest value in the set of values.

• If the record is in a segment with values organized from highest to lowest (segment
type SH1), the first logical record that the FST. prefix operator retrieves is the
highest value in the set of values. The LST. prefix operator would, therefore, retrieve
the lowest value in the set of values.

For more information on segment types and file design, see the Describing Data manual.
If you wish to reorganize the data in the data source or restructure the data source while
reporting, see Chapter 15, Improving Report Processing.

Example Retrieving the First Record
The following request retrieves the first logical record in the EMP_ID field:

TABLE FILE EMPLOYEE
SUM FST.EMP_ID
END

The output is:

 Manipulating Display Fields With Prefix Operators

Creating Reports 2-25

Example Segment Types and Retrieving Records
The EMPLOYEE data source contains the DEDUCT segment, which orders the fields
DED_CODE and DED_AMT from lowest value to highest value (segment type of S1).
The DED_CODE field indicates the type of deduction, such as CITY, STATE, FED, and
FICA. The following request retrieves the first logical record for DED_CODE for each
employee:

TABLE FILE EMPLOYEE
SUM FST.DED_CODE
BY EMP_ID
END

The output is:

Note, however, the command SUM LST.DED_CODE would have retrieved the last
logical record for DED_CODE for each employee.

If the record is in a segment with values organized from highest to lowest (segment type
SH1), the first logical record that the FST. prefix operator retrieves is the highest value in
the set of values. The LST. prefix operator would, therefore, retrieve the lowest value in
the set of values.

Displaying Report Data

2-26 Information Builders

For example, the EMPLOYEE data source contains the PAYINFO segment, which
orders the fields JOBCODE, SALARY, PCT_INC, and DAT_INC from highest value to
lowest value (segment type SH1). The following request retrieves the first logical record
for SALARY for each employee:

TABLEF FILE EMPLOYEE
SUM FST.SALARY
BY EMP_ID
END

The output is:

However, the command SUM LST.SALARY would have retrieved the last logical record
for SALARY for each employee.

 Manipulating Display Fields With Prefix Operators

Creating Reports 2-27

Summing and Counting Values
You can count occurrences and summarize values all in one display command using the
prefixes CNT., SUM., and TOT. Just like the COUNT command, CNT. counts the
occurrences of the one field it prefixes; just like the SUM command, SUM. sums the
values of a particular field. TOT. counts the occurrences of the field for use in a heading
(includes footings, subheads, and subfoots).

Example Counting Values With CNT
The following request counts the occurrences of PRODUCT_ID and sums the value of
UNIT_PRICE.

TABLE FILE GGPRODS
SUM CNT.PRODUCT_ID AND UNIT_PRICE
END

The output is:

PRODUCT_ID Unit
COUNT Price
---------- -----
 10 660.00

Example Summing Values With SUM
The following request counts the occurrences of PRODUCT_ID and sums the value of
UNIT_PRICE.

TABLE FILE GGPRODS
COUNT PRODUCT_ID AND SUM.UNIT_PRICE
END

The output is:

PRODUCT_ID Unit
COUNT Price
---------- -----
 10 660.00

Displaying Report Data

2-28 Information Builders

Example Counting Values With TOT
The following request uses the TOT prefix operator to show the total of current salaries
for all employees.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY DEPARTMENT
ON TABLE SUBFOOT
"Total salaries equal: <TOT.CURR_SAL"
END

The output is:
DEPARTMENT LAST_NAME
---------- ---------
MIS SMITH
 JONES
 MCCOY
 BLACKWOOD
 GREENSPAN
 CROSS
PRODUCTION STEVENS
 SMITH
 BANNING
 IRVING
 ROMANS
 MCKNIGHT
Total salaries equal: $222,284.00

 Manipulating Display Field Values in a Sort Group

Creating Reports 2-29

Manipulating Display Field Values in a Sort Group
You can use the WITHIN phrase to manipulate a display field’s values as they are
aggregated within a sort group. This technique can be used with a prefix operator to
perform calculations on a specific aggregate field rather than a report column. In
contrast, the SUM and COUNT commands aggregate an entire column.

The WITHIN phrase requires a BY phrase and/or an ACROSS phrase. A maximum of
two WITHIN phrases can be used per display command. If one WITHIN phrase is used,
it must act on a BY phrase. If two WITHIN phrases are used, the first must act on a BY
phrase and the second on an ACROSS phrase.

Syntax How to Use WITHIN to Manipulate Display Fields
{SUM|COUNT} display_field WITHIN by_sort_field [WITHIN across_sort_field]
 BY by_sort_field [ACROSS across_sort_field]

where:

display_field

Is the object of a SUM or COUNT display command.

by_sort_field

Is the object of a BY phrase.

across_sort_field

Is the object of an ACROSS phrase.

Reference Usage Notes for WITHIN
• You can use up to 64 fields in a display command with the WITHIN phrase.

• You can also use the syntax WITHIN TABLE, which allows you to return the
original value within a request command.

• The WITHIN TABLE command can also be used when an ACROSS phrase is
needed without a BY phrase. Otherwise, a single WITHIN phrase requires a BY
phrase.

Displaying Report Data

2-30 Information Builders

Example Summing Values Within Sort Groups
The following report shows the units sold and the percent of units sold for each product
within store and within the table:

TABLE FILE SALES
SUM UNIT_SOLD AS 'UNITS'
AND PCT.UNIT_SOLD AS 'PCT,SOLD,WITHIN,TABLE'
AND PCT.UNIT_SOLD WITHIN STORE_CODE AS 'PCT,SOLD,WITHIN,STORE'
BY STORE_CODE SKIP-LINE BY PROD_CODE
END

The output is:

PAGE 1

 PCT PCT
 SOLD SOLD
 WITHIN WITHIN
 STORE_CODE PROD_CODE UNITS TABLE STORE

 ---------- --------- ----- ------ ------
 K1 B10 13 1 30
 B12 29 4 69

 14B B10 60 8 15
 B12 40 5 10
 B17 29 4 7
 C13 25 3 6
 C7 45 6 11
 D12 27 3 7
 E2 80 11 21
 E3 70 10 18

PAGE 2

 PCT PCT
 SOLD SOLD
 WITHIN WITHIN
 STORE_CODE PROD_CODE UNITS TABLE STORE

 ---------- --------- ----- ------ ------
 14Z B10 30 4 18
 B17 20 2 12
 B20 15 2 9
 C17 12 1 7
 D12 20 2 12
 E1 30 4 18
 E3 35 5 21

 77F B20 25 3 38
 C7 40 5 61

Creating Reports 3-1

CHAPTER 3

Viewing and Printing Report Output

Topics:

• Displaying Reports in Hot Screen

• Scrolling a Report

• Displaying Reports in the Panel
Facility

• Printing Reports

• Displaying Reports in the Terminal
Operator Environment

Reports can be displayed on a terminal screen, sent to a printer,
or routed to a file. FOCUS provides the Hot Screen facility and
the Terminal Operator Environment for displaying reports on a
screen, and the OFFLINE command and the Hot Screen facility
for printing reports.

To display reports on a terminal screen, the value of the SET
command PRINT parameter must be ONLINE, which is the
default.

To send reports to a printer, the PRINT parameter must be set to
OFFLINE.

This topic describes how to:

• Display reports in Hot Screen.

• Display reports in the Terminal Operator Environment.

• Display reports with the Panel facility.

• Preview a report without accessing the data.

• Send reports to a printer.

• Route reports to a file.

Viewing and Printing Report Output

3-2 Information Builders

Displaying Reports in Hot Screen
By default, FOCUS reports are displayed in Hot Screen, the FOCUS full-screen output
facility that enables you to scroll within a report, store report data in a separate file, and
print a report.

This topic describes how to:

• Activate Hot Screen.

• Use PRINTPLUS.

• Control the Display of Emptying Reports.

• Access Help information.

• Scroll a report.

• Save selected data on reports.

• Locate character strings.

• Repeat commands.

• Redisplay reports.

• Display BY fields with panels.

• Scroll by columns of BY fields on panels.

Many of these functions can be invoked by using keys or by issuing commands at the
command line. You can abbreviate a command name by using its shortest unique
truncation.

 Displaying Reports in Hot Screen

Creating Reports 3-3

Syntax How to Activate Hot Screen
FOCUS automatically activates Hot Screen every time you start a FOCUS session.

To check if Hot Screen is activated, issue

? SET

at the FOCUS command line. The value of SCREEN should be ON.

If you are using a full-screen terminal, you can activate Hot Screen by issuing

SET SCREEN=ON

at the FOCUS command line. This is the default setting for full-screen terminals. Other
acceptable values you can set SCREEN to are OFF and PAPER.

• If SCREEN is set to OFF, then Hot Screen is inactive. In this setting, FOCUS
displays report output in line mode. It is the only setting for line terminals.

• If SCREEN is set to PAPER, Hot Screen is active and FOCUS uses the settings for
the LINES and PAPER parameters to set the format of the screen display. The
default settings are LINES=57 and PAPER=66. See the Developing Applications
manual for more information about the LINES and PAPER parameters.

Use SET SCREEN=PAPER when you want the report display on your full-screen
terminal to match the printed report.

Note: You can reset the SCREEN parameter with both the SET SCREEN command or
the ON TABLE SET SCREEN command in a report request.

Viewing and Printing Report Output

3-4 Information Builders

Using PRINTPLUS
PRINTPLUS includes enhancements to the display alternatives offered by the FOCUS
Report Writer. For example, you might wish to place a FOOTING after a SUBFOOT in
your report. PRINTPLUS provides the flexibility to produce the exact report you desire.

The PRINTPLUS parameter must be set to ON (the default) to use the TABLE
capabilities. With PRINTPLUS on, the following occur:

• PAGE-BREAK is handled internally to provide the correct spacing of pages. For
example, if a new report page is started and an instruction to skip a line at the top of
the new page is encountered, FOCUS now knows to suppress the blank line and start
at the top of the page.

• NOSPLIT is handled internally. (Use NOSPLIT to force a break at a specific spot.)

• You can perform RECAPs in cases where pre-specified conditions are met.

• A Report SUBFOOT now prints above the footing instead of below it.

Note:

• PRINTPLUS is not supported with StyleSheets. A warning message is generated in
this case.

• Problems may be encountered if HOTSCREEN is set OFFLINE. A warning message
is generated.

Syntax How to Use PRINTPLUS
Issue the command

SET PRINTPLUS = {ON|OFF}

 Displaying Reports in Hot Screen

Creating Reports 3-5

Example Using PRINTPLUS With SUBFOOT and FOOTING
With PRINTPLUS on (the default), the SUBFOOT prints first, followed by the
FOOTING.

USE CAR FOCUS F
 END

 TABLE FILE CAR
 PRINT CAR MODEL
 BY SEATS BY COUNTRY
 IF COUNTRY EQ ENGLAND OR FRANCE OR ITALY
 ON TABLE SUBFOOT
 " "
 " SUMMARY OF CARS IN COUNTRY BY SEATING CAPACITY"
 FOOTING
 " RELPMEK CAR SURVEY "
 END

The output is:

SEATS COUNTRY CAR MODEL
----- ------- --- -----
 2 ENGLAND TRIUMPH TR7
 ITALY ALFA ROMEO 2000 GT VELOCE
 ALFA ROMEO 2000 SPIDER VELOCE
 MASERATI DORA 2 DOOR
 4 ENGLAND JAGUAR V12XKE AUTO
 JENSEN INTERCEPTOR III
 ITALY ALFA ROMEO 2000 4 DOOR BERLINA
 5 ENGLAND JAGUAR XJ12L AUTO
 FRANCE PEUGEOT 504 4 DOOR

 SUMMARY OF CARS IN COUNTRY BY SEATING CAPACITY
 RELPMEK CAR SURVEY

Viewing and Printing Report Output

3-6 Information Builders

Controlling the Display of Empty Reports
The command SET EMPTYREPORT enables you to control the output generated when a
TABLE request retrieves zero records.

Issue this command from the command line

SET EMPTYREPORT = {ON|OFF}

where:

ON

Generates an empty report when zero records are found.

OFF

Does not generate a report when zero records are found. OFF is the default setting.

The command may also be issued from within a request. For example:

ON TABLE SET EMPTYREPORT ON

Note:

• TABLEF is not supported with SET EMPTYREPORT. When a TABLEF request
retrieves zero records, EMPTYREPORT behaves as if EMPTYREPORT is set ON.

• This is a change in default behavior from prior releases of FOCUS. To restore prior
default behavior, issue the SET EMPTYREPORT = ON command.

• SET EMPTYREPORT = OFF is not supported for HOLD FORMAT WP files.

• SET EMPTYREPORT = ON behaves as described above regardless of ONLINE or
OFFLINE settings.

Accessing Help Information
To access help information about PF key assignments in Hot Screen, press PF1:

To view additional information about PF keys, press PF1 a second time.

To clear the Help window, press PF1 a third time.

You can also issue the SET HOTMENU command to display the Hot Screen PF key
legend at the bottom of the Hot Screen report. For more information about the SET
HOTMENU command, see the Developing Applications manual.

 Scrolling a Report

Creating Reports 3-7

Scrolling a Report
You can use Hot Screen PF keys or commands to scroll within a report.

This section describes the keys and commands you use to scroll:

• Forward

• Backward

• Horizontally

• From fixed columns

Scrolling Forward
To scroll a report forward one page at a time, press PF8. Hot Screen displays the bottom
two lines of the previous screen as the top two lines of the next screen.

When there are no more report lines, FOCUS displays the END-OF-REPORT message at
the bottom of the screen. To clear this message and the end of the report, press ENTER.
Hot Screen will return to the FOCUS command line.

You can also issue the following commands at the bottom of the screen to scroll forward
through a report:

BOTTOM Scrolls the display directly to the last page of the report.

NEXT n Scrolls the display forward by the number of pages you specify.

FORW n Like NEXT, scrolls the display forward the number of pages you
specify.

DOWN n Like NEXT and FORW, scrolls the display forward the number of
pages you specify.

Note: If omitted, n defaults to 1.

Scrolling Backward
To scroll backward from the bottom of a report, press PF7.

You can also use the following commands to scroll backward through the report:

TOP Scrolls the display directly back to the first page of the report.

UP n Scrolls the display back the number of pages you specify.

BACK n Like UP, scrolls the display back the number of pages you specify.

Note: If omitted, n defaults to 1.

Viewing and Printing Report Output

3-8 Information Builders

Scrolling Horizontally
When a report exceeds the width of a screen, you can view it by scrolling horizontally to
the left and to the right.

FOCUS displays the following symbol in the bottom right corner of the screen when the
report is too wide:

MORE =>

You can also have Hot Screen scroll directly back to your first report screen.

• To scroll horizontally to the left one screen, press PF10. You can also issue:

LEFT n

where n is the number of characters. If n is omitted, it defaults to half of a screen.

• To scroll horizontally to the right one screen, press PF11 or issue:

RIGHT n

where n is the number of characters. If n is omitted, it defaults to 4 characters.

• To scroll directly back to the first screen, press PF9 or issue:

RESET

If you wish to scroll horizontally from a particular column, move the cursor to that
location and press PF10 to scroll left or PF11 to scroll right.

Scrolling From Fixed Columns (Fencing)
To help you view a wide report in Hot Screen, you can hold the display of sort fields in
the left-most columns of the screen while you scroll horizontally to the right to view the
remaining columns.

To define a block of fixed columns, the steps are:

1. Scroll the display to the start of the first column to be held.

2. Press PF2.

3. Move the cursor to the end of the last column to be held.

4. Press PF2 again.

 Scrolling a Report

Creating Reports 3-9

Scrolling Report Headings
You can make report headings and footers scroll along with the report contents in your
HotScreen report by using the SET BYSCROLL command. Headings and footers scroll
along with data to avoid confusion in matching the data with a corresponding header or
footer.

To scroll report headings along with data the syntax is:

SET BYSCROLL = {ON|OFF}

where:

ON

Enables BYSCROLL.

OFF

Disables BYSCROLL. OFF is the default.

In order to use BYSCROLL, the text in the report must be longer than 80 characters and
BYPANEL must be set ON. With BYPANEL OFF, headings and footings will not scroll.
Note that fencing is not supported while BYPANEL is on. To determine the setting of
BYSCROLL, enter ? SET ALL. (? SET does not display BYSCROLL.)

Saving Selected Data
Hot Screen also enables you to select and save data from a report request for use in
subsequent requests. The steps are:

1. Position the cursor under the first character of the text to be saved.

2. Press PF6. FOCUS will save the text from that start character to the end of the line in
a file with the file name SAVE. See Chapter 11, Saving and Reusing Report Output,
for information about SAVE files.

Each time you repeat these steps, new text is appended to the SAVE file.

Viewing and Printing Report Output

3-10 Information Builders

Locating Character Strings
To locate a character string in a report, the steps are:

1. Press PF5. FOCUS will prompt for the string:

ENTER STRING TO LOCATE /

2. Type the string you want to locate and press Enter.

FOCUS will search from the current position forward. When the string is located, the
cursor is placed under the first occurrence of the string in the report. To locate additional
instances of the string, press Enter for each instance. If the string is not found, a message
is displayed at the bottom of the screen.

You can also issue the following command from the command line:

LOCATE/string

Repeating Commands
If you want to use a command repeatedly, issue it with a doubled first letter.

For example:

RRIGHT 5

After the command is executed, it will remain on the command line and can be repeated
by pressing Enter.

You can cancel a command implicitly, by using a key command, or explicitly, by tabbing
the cursor down to the command line and overwriting it with another command or
spaces.

 Scrolling a Report

Creating Reports 3-11

Redisplaying Reports
To redisplay reports immediately after you clear the last display, issue the command:

RETYPE

RETYPE only redisplays the report; the retrieval process is not repeated.

You can also use the RETYPE command to reformat specific fields in the report. The
syntax is

RETYPE [field1/format1 ... fieldn/formatn]

where:

field1

Is a field name from the previous report request. It can be the full field name, alias,
qualified field name, or unique truncation.

format1

Is the format of the field whose field type (D, I, P, F) is the same as the original field
in the request. All formats except alpha (A), text (TX), dates, and fields with date
edit options are supported.

When no arguments are provided, RETYPE redisplays the report. When one or more
arguments are supplied, RETYPE redisplays the entire report and reformats the specified
fields to the new format.

Note:

• RETYPE with a reformatted field does not recognize labels in EMR.

• When reformatting a packed field, the number of places after the decimal point may
not be changed. For example, a P7 field can be redisplayed as P9 or P12.0C, but not
as P9.2.

• You can save the internal matrix and issue a RETYPE later in the session if
SAVEMATRIX is set ON (see the Developing Applications manual).

• You can issue any number of RETYPE commands one after the other:

TABLE FILE EMPLOYEE
.
.
.
END

RETYPE
RETYPE

Viewing and Printing Report Output

3-12 Information Builders

Previewing Your Report
You can also preview the format of a report without actually accessing any data. The
SET XRETRIEVAL command enables you to perform TABLE, TABLEF, or MATCH
FILE requests and produce HOLD Master Files without processing the report. The syntax
is

SET XRETRIEVAL = {OFF|ON}

where:

OFF

Specifies that no retrieval is to be performed.

ON

Specifies retrieval is to be performed. ON is the default.

SET XRETRIEVAL may also be issued from within a FOCUS request.

Displaying BY Fields With Panels
Hot Screen also enables you to display BY fields in the left portion of each panel of
multi-panel reports. BY fields are vertical sort fields (see Chapter 4, Sorting Tabular
Reports). The non-BY fields are displayed on the right portion of the panel. BY paneling
is also available for OFFLINE reports.

To enable the display of BY fields with panels, set the BYPANEL parameter to one of
the following values before issuing the request:

ON Displays all BY fields specified in the report on each panel and prevents
column splitting.

n Is the number of BY fields to be displayed; n is less than or equal to the
total number of BY fields, specified in the request, from the major sort (first
BY field) down. Column splitting is prevented.

Column splitting occurs when a report column is too large to fit on the
defined panel. By default, FOCUS splits the column, displaying as many
characters as possible, and the remaining characters continue on the next
panel.

0 Zero displays BY fields on only the first panel. Column splitting is
prevented.

OFF Displays BY fields on the first panel only. Column splitting is permitted.
This is the default.

 Scrolling a Report

Creating Reports 3-13

In the following example, SET BYPANEL=ON displays the BY fields COUNTRY and
CAR on each panel:

SET BYPANEL=ON
TABLE FILE CAR
PRINT SEG.LENGTH BY COUNTRY BY CAR
WHERE COUNTRY EQ 'ENGLAND'
END

Reference BYPANEL Conditions
• In Hot Screen, the panel width for the SET BYPANEL command is the physical

screen width. The SET PANEL command will be ignored.

• In OFFLINE reports, the SET PANEL command is respected when used with SET
BYPANEL. If you choose to override the report width, using the SET PANEL
command, define a panel large enough to enable the BYPANEL feature. The panel
size should accommodate all the BY fields in the request plus one non-BY field. If
the defined panel is too small, the BYPANEL feature is disabled for the request and
you receive a FOCUS error message.

• In OFFLINE reports, the SET BYPANEL command only works for widths of up to
132 characters.

• When SET BYPANEL is specified, the maximum number of panels is 99. When
SET BYPANEL is OFF, the maximum number of panels is 4.

• BYPANEL may not be set from within a TABLE request using the ON TABLE SET
command.

• Setting SCREEN=PAPER respects the SET BYPANEL command.

• The BYPANEL command may truncate summary text.

Viewing and Printing Report Output

3-14 Information Builders

• The BYPANEL = ON command may truncate heading text. The heading will be
repeated from the beginning on the following panels.

• FOCUS treats the OVER phrase as a physical block when it is used with the
BYPANEL feature. As a result, FOCUS may split the column even though you have
specified BYPANEL.

• In a request with several display commands, the number of BY fields in the first
display command determines the BY field count for the BYPANEL command.

• You may not use the FOLD-LINE and IN to position columns with the BYPANEL
command.

• You may not use BYPANEL with the GRAPH facility.

Scrolling by Columns of BY Fields in Panels
When a report is wider than the screen width and the SET COLUMNS command is
specified, you can scroll columns using PF keys:

• To move to the right one column, press PF10.

• To move to the left one column, press PF11.

• To move up within the same column, press PF7.

• To move down within the same column, press PF8.

The SET COLUMNS Command
To enable column scrolling described in this section, specify the SET COLUMNS
command as ON. To turn column scrolling off, specify SET COLUMNS as OFF.

Note the following usage information:

• If you specify the panel feature (SET PANEL), the panel size must be greater than
the screen width in order for you to perform column scrolling.

• You cannot control column scrolling from within a TABLE request using the ON
TABLE SET command.

• Report output must extend beyond the screen for column scrolling to have an effect.

• The OVER formatting option is not supported.

• Column width is determined by either the column title or field format, whichever is
larger.

• When COLUMNS and BYPANEL are both set to ON, column scrolling is not
enabled.

• Heading and footing lines are not maintained across the report as you scroll.

 Displaying Reports in the Panel Facility

Creating Reports 3-15

Displaying Reports in the Panel Facility
The Panel facility enables you to view reports that are too wide to fit on a typical
80-character terminal screen by dividing the display into a maximum of four panels.
Pages are automatically numbered with decimal notation indicating the panel number
(for example, 1.1, 1.2, 1.3), so that the results can be easily referenced. When these pages
are produced as hardcopy, the page numbers also help you place the panels side by side.
This feature is also very useful for reports over the 132-character standard line printer
width.

To panel your report, issue

SET PANEL=n

before a report request. n is the number of characters you want displayed in each panel.
This number must be in the range of 40 to 130.

For example:

SET PANEL=73
TABLE FILE EMPLOYEE
.
.
.
END

However, if you did not issue the panel command and the request has already been
executed, FOCUS will automatically prompt you for a panel width:

REPORT WIDTH IS ### IT EXCEEDS TERMINAL PRINT LINE OF 130
TO PROCEED ENTER A PANEL WIDTH (40-130) OR 0 TO END =

At that point, you can either enter a number between 40 and 130, or enter 0 to end the
report request.

Note:

• If the SET BYPANEL command is specified, the SET PANEL command is ignored
for reports displayed in Hot Screen and the terminal screen can be divided into a
maximum of 99 panels.

• The PANEL setting is ignored if StyleSheets are enabled.

Viewing and Printing Report Output

3-16 Information Builders

Printing Reports
You can print reports by issuing a command or by pressing a function key while in Hot
Screen.

The OFFLINE Command
You can use the OFFLINE command to send reports directly to a printer or a file without
first displaying them on the screen. Simply issue the command

OFFLINE

before a report request.

Generally, this will direct all offline reports to the default output spool file. This file is
assigned automatically when FOCUS is entered, and is in almost all cases a printer.

However, if you already issued the report request to be displayed online, you can still
send its output to the printer by simply entering

OFFLINE

and then

RETYPE

at the FOCUS command line

You can also direct report output to a printer from within a report request by using the
ON TABLE command:

ON TABLE SET PRINT OFFLINE

You can use OFFLINE to send reports to a file by allocating the ddname OFFLINE, as
device type DISK, to the desired file using the FILEDEF command under CMS, or the
FOCUS DYNAM command under MVS. The FILEDEF and DYNAM commands are
described in the Overview and Operating Environments manual.

You can reroute report output to your screen by issuing

ONLINE

at the FOCUS command line, or reroute it only for the current request by including an
ON TABLE SET PRINT ONLINE command in the request. Be sure to also issue the
command

OFFLINE CLOSE

to close any current spool file and enable you to allocate new ones.

 Displaying Reports in the Terminal Operator Environment

Creating Reports 3-17

Printing Reports in Hot Screen
To send all or part of a report displayed in Hot Screen to an OFFLINE output device,
press PF4.

The following print menu is displayed at the bottom of the screen:

1-Print entire report 2-Print this page 3-Cancel 4-Hold

1. Reformats the report to current page settings and then sends the entire report to a
printer.

2. Prints the report page displayed, as formatted on the terminal screen.

3. Removes the print menu.

4. Creates a HOLD file using the entire report. The Master and FOCTEMP files will
have the default name HOLD.

Press the desired number key (not function key) and then press Enter.

Displaying Reports in the Terminal Operator
Environment

The FOCUS Terminal Operator Environment, discussed in the Overview and Operating
Environments manual, provides a Table window that displays the report of the most
recently executed report request. This enables you to view the report again without
resubmitting the request. Unlike the RETYPE command, the most recent report is
available even if other commands have been issued after the request.

The Table window displays a TABLE report as soon as you have terminated the report in
Hot Screen. It holds up to the first 10 pages of report data. That is up to 200 lines that are
up to a width of 130 characters.

Note: The Table Window does not record TABLEF reports, offline reports, or reports
issued while the FOCUS SET SCREEN command is set to OFF.

Creating Reports 4-1

CHAPTER 4

Sorting Tabular Reports

Topics:

• Sorting Rows

• Sorting Columns

• Sorting Rows and Columns

• Specifying the Sort Order

• Grouping Numeric Data Into Ranges

• Restricting Sort Field Values by
Highest/Lowest Rank

• Aggregating and Sorting Report
Columns

• Ranking Sort Field Values

• Hiding Sort Values

• Sorting With Multiple Display
Commands

• Improving Efficiency With External
Sorts

Sorting enables you to group or organize report information
vertically and horizontally, in rows and columns, and specify a
desired sequence.

The sort field organizes the rows and columns and controls the
sequence of data items in the report. Any field in the data source
can be the sort field. If you wish, you can select several sort
fields, nesting one within another. Sort fields display when their
values change.

You sort a report using BY and ACROSS phrases:

• BY displays the sort field values vertically, creating rows.
Vertical sort fields are displayed in the left-most columns of
the report.

• ACROSS displays the sort field values horizontally,
creating columns. Horizontal sort fields are displayed
across the top of the report.

• BY and ACROSS used in the same report create rows and
columns, producing a grid or matrix.

Sorting Tabular Reports

4-2 Information Builders

Additional sorting options include the following:

• Sorting from low-to-high values or high-to-low values, and defining your own
sorting sequence.

• Grouping numeric data into ranges.

• Ranking data and selecting data by rank.

• Leaving the sort field’s value out of the report.

• Aggregating and sorting numeric columns simultaneously.

Reference Sorting and Displaying Data
There are two ways that you can sort information, depending on the type of display
command you use:

• You can sort and display individual values of a field using the PRINT or LIST
command.

• You can group and aggregate information, for example, showing the number of field
occurrences per sort value using the COUNT command, or summing the field values
using the SUM command.

When you use the display commands PRINT and LIST, the report may generate several
rows per sort value—specifically, one row for each occurrence of the display field. When
you use the commands SUM and COUNT, the report generates one row for each unique
set of sort values. For related information, see Sorting With Multiple Display Commands
on page 4-31.

For details on all display commands, see Chapter 2, Displaying Report Data.

 Sorting Rows

Creating Reports 4-3

Sorting Rows
You can sort report information vertically using the BY phrase. This creates rows in your
report.

You can include up to 32 BY phrases per report request (31 if using PRINT or LIST
display commands).

Syntax How to Sort by Rows
The syntax for the BY phrase is

BY sortfield

where:

sortfield

Is the name of the sort field.

Reference Usage Notes for Sorting Rows
• When using the display command LIST with a BY phrase, the LIST counter is reset

to 1 each time the major sort value changes.

• Each sort field value appears only once in the report. For example, if there are six
employees in the MIS department, a request that declares

PRINT LAST_NAME BY DEPARTMENT

prints MIS once, followed by six employee names.

• The default sort sequence is low-to-high, with the following variations for different
operating systems. In MVS and VM the sequence is a-z, A-Z, 0-9 for alphanumeric
fields; 0-9 for numeric fields. In UNIX and NT the sequence is 0-9, A-Z, a-z for
alphanumeric fields; 0-9 for numeric. You can specify other sorting sequences, as
described in Specifying the Sort Order on page 4-10.

• You cannot use text fields as sort fields (text fields are those described in the Master
File with a FORMAT value of TX).

• You cannot use a temporary field created by a COMPUTE command as a sort field.
However, you can accomplish this indirectly by first creating a HOLD file that
includes the field and then reporting from the HOLD file (HOLD files are described
in Chapter 11, Saving and Reusing Your Report Output). However, you can use a
temporary field created by a DEFINE command, or by the DEFINE attribute in a
Master File, as a sort field.

• If you specify several sort fields when reporting from a multi-path data source, all
the sort fields must be in the same path.

• Sort phrases cannot contain format information for fields.

Sorting Tabular Reports

4-4 Information Builders

Example Sorting Rows With BY
To display all employee IDs for each department, issue the following request:

TABLE FILE EMPLOYEE
PRINT EMP_ID
BY DEPARTMENT
END

The output displays a row for each EMP_ID in each department:

Using Multiple Sort Fields With BY
You can organize information in a report using more than one sort field. When you
specify several sort fields, the sequence of the BY phrases determines the sort order: the
first BY phrase sets the major sort break, the second BY phrase sets the second sort
break, and so on. Each successive sort is nested within the previous one.

 Sorting Columns

Creating Reports 4-5

Example Sorting With Multiple BYs
The following request uses multiple BYs to sort rows:

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY DEPARTMENT BY LAST_NAME
WHERE CURR_SAL GT 21500
END

The output is:

Sorting Columns
You can sort report information horizontally using the ACROSS phrase. This creates
columns in your report. You can have up to five ACROSS phrases per report request.
Each ACROSS phrase can retrieve up to 95 sort field values. The total number of
ACROSS columns is equal to the total number of ACROSS sort field values multiplied
by the total number of display fields. The maximum number of display fields your report
can contain is determined by a combination of factors. For details, see Chapter 1,
Creating Tabular Reports.

You can also produce column totals for ACROSS sort field values using
ACROSS-TOTAL. For details see, Producing Column Totals With ACROSS-TOTAL on
page 4-7.

Syntax How to Sort Columns
The syntax for the ACROSS phrase is

ACROSS sortfield

where:

sortfield

Is the name of the sort field.

Sorting Tabular Reports

4-6 Information Builders

Reference Usage Notes for Sorting Columns
• Each sort field value is displayed only once in the report. For example, if there are

six employees in the MIS department, a report that declares

PRINT LAST_NAME ACROSS DEPARTMENT

will print MIS once, followed by six employee names.

• You cannot use text fields as sort fields (text fields are those described in the Master
File with a FORMAT value of TX).

• You cannot use a temporary field created by a COMPUTE command as a sort field.
However, you can accomplish this indirectly by first creating a HOLD file that
includes the field and then reporting from the HOLD file (HOLD files are described
in Chapter 11, Saving and Reusing Your Report Output). You can use a temporary
field created by a DEFINE command, or by the DEFINE attribute in a Master File,
as a sort field.

• For an ACROSS phrase, the SET SPACES command controls the distance between
ACROSS sets. For more information, see Chapter 9, Customizing Tabular Reports.

• Sort phrases cannot contain format information for fields.

• If you specify several sort fields when reporting from a multi-path data source, all
the sort fields must be in the same path.

Example Sorting Columns With ACROSS
To show each department’s salary outlay, issue the following request:

TABLE FILE EMPLOYEE
SUM CURR_SAL ACROSS DEPARTMENT
END

The output is:

Notice that the horizontal sort displays a column for each sort field (department).

 Sorting Columns

Creating Reports 4-7

Using Multiple Sort Fields With ACROSS
You can sort a report using more than one sort field. When several sort fields are used,
the ACROSS phrase order determines the sorting order: the first ACROSS phrase sets the
first sort break, the second ACROSS phrase sets the second sort break, and so on. Each
successive sort is nested within the previous one.

Example Sorting With Multiple ACROSS Phrases
The request sorts the sum of current salary, first by department, then by job code.

TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS DEPARTMENT ACROSS CURR_JOBCODE
WHERE CURR_SAL GT 21500
END

The output is:

Producing Column Totals With ACROSS-TOTAL
ACROSS-TOTAL produces totals for columns of numbers created by an ACROSS sort
phrase. The display of data on a report makes the report simple to read and understand.
Integer, single precision floating point, double precision floating point, packed, and long
packed fields can all be totaled.

ACROSS-TOTAL differs from ROW-TOTAL in that ACROSS-TOTAL only totals the
ACROSS column data, excluding the sorted column data that ROW-TOTAL displays.

Sorting Tabular Reports

4-8 Information Builders

Syntax How to Produce Column Totals With ACROSS-TOTAL
ACROSS sortfield ACROSS-TOTAL [AS 'name'] [COLUMNS col1 AND col2 ...]

where:

sortfield

Is the name of the field being sorted across.

name

Is the new name for the ACROSS-TOTAL column title.

col1, col2

Are the titles of the ACROSS columns you want to include in the total.

Example Requesting ACROSS-TOTAL in a Report
TABLE FILE MOVIES
SUM COPIES BY CATEGORY
COUNT TITLE BY CATEGORY
ACROSS RATING ACROSS-TOTAL
COLUMNS PG AND R
END

The output is:
 RATING
 PG R TOTAL
 TITLE TITLE TITLE
 CATEGORY COPIES COUNT COUNT COUNT

 ACTION 14 2 3 5
 COMEDY 16 4 1 5
 DRAMA 2 0 1 1
 FOREIGN 5 2 3 5
 MUSICALS 2 1 1 2
 MYSTERY 17 2 5 7
 SCI/FI 3 0 3 3

Reference Usage Notes for ACROSS-TOTAL
• Stacking headings in ACROSS-TOTAL is not allowed.

• Attempts to use ACROSS-TOTAL with other types of fields (alphanumeric, text,
and dates) produces blank columns.

• In cases of multiple ACROSS columns with ACROSS-TOTAL there will be
additional columns with subtotaled values.

• The results of ROW-TOTAL and ACROSS-TOTAL are the same if there is only a
single display field or single display command in the procedure.

• The maximum number of ACROSS-TOTAL phrases is 5.

 Sorting Rows and Columns

Creating Reports 4-9

Sorting Rows and Columns
You can create a matrix report by sorting both rows and columns. When you include
both BY and ACROSS phrases in a report request, information is sorted vertically and
horizontally, turning the report into a matrix of information that you read like a grid. A
matrix report can have several BY and ACROSS sort fields.

Example Creating a Simple Matrix
The following request displays total salary outlay across departments and by job codes,
creating a matrix report.

TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS DEPARTMENT
BY CURR_JOBCODE
END

The output is:

Sorting Tabular Reports

4-10 Information Builders

Example Creating a Matrix With Several Sort Fields
The following request uses several BY and ACROSS sort fields to create a matrix report.

TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS DEPARTMENT ACROSS LAST_NAME
BY CURR_JOBCODE BY ED_HRS
WHERE DEPARTMENT EQ 'MIS'
WHERE CURR_SAL GT 21500
END

The output is:

Specifying the Sort Order
Sort field values are automatically displayed in ascending order, beginning with the
lowest value and continuing to the highest value. The default sorting sequence varies for
operating systems. On MVS and VM it is a-z, A-Z, 0-9 for alphanumeric fields; 0-9 for
numeric fields. On UNIX and NT it is 0-9, A-Z, a-z for alphanumeric fields; 0-9 for
numeric fields.

You have the option of overriding this default and displaying values in descending order,
ranging from the highest value to the lowest value, by including HIGHEST in the sort
phrase.

 Specifying the Sort Order

Creating Reports 4-11

Syntax How to Specify the Sort Order
{BY|ACROSS} {LOWEST|HIGHEST} sortfield

where:

LOWEST

Sorts in ascending order, beginning with the lowest value and continuing to the
highest value (a-z, A-Z, 0-9 for alphanumeric fields; 0-9 for numeric fields). This
option is the default.

HIGHEST

Sorts in descending order, beginning with the highest value and continuing to the
lowest value. You can also use TOP as a synonym for HIGHEST.

sortfield

Is the name of the sort field.

Example Sorting in Ascending Order
The following report request does not specify a particular sorting order, and so, by
default, it lists salaries ranging from the lowest to the highest.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY CURR_SAL
END

You can explicitly specify this same ascending order by including LOWEST in the sort
phrase.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY LOWEST CURR_SAL
END

The output is:

Sorting Tabular Reports

4-12 Information Builders

Example Sorting in Descending Order
The following request lists salaries ranging from the highest to lowest.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY HIGHEST CURR_SAL
END

The output is:

Specifying Your Own Sort Order
Sort field values are automatically displayed in ascending order, beginning with the
lowest value and continuing to the highest value.

You can override the default order and display values in your own user-defined sorting
sequence. To do this, you need to decide the following:

1. Which sort field values you want to allow. You can specify every sort field value or
a subset of values. When you issue your report request, only records containing these
values are included in the report.

2. In what order you want the values to appear. You can specify any order—for
example, you could specify that an A1 sort field containing a single-letter code be
sorted in the order A, Z, B, C, Y...

There are two ways to specify your own sorting order, depending on whether you are
sorting rows with BY or sorting columns with ACROSS:

• BY field ROWS OVER for defining your own row sort sequence.

• ACROSS field COLUMNS AND for defining your own column sort sequence.

 Specifying the Sort Order

Creating Reports 4-13

Syntax How to Define Your Own Sort Order
BY sortfield ROWS value1 OVER value2 [... OVER valuen]

where:

sortfield

Is the name of the sort field.

value1

Is the sort field value that is first in the sorting sequence.

value2

Is the sort field value that is second in the sorting sequence.

valuen

Is the sort field value that is last in the sorting sequence.

An alternative syntax is

FOR sortfield value1 OVER value2 [... OVER valuen]

which uses the row-based reporting phrase FOR, described in Chapter 16, Creating
Financial Reports.

Reference Usage Notes for Defining Your Sort Order
• Any sort field value that you do not specify in the BY ROWS OVER phrase is not

included in the sorting sequence and does not appear in the report.

• Sort field values that contain embedded blank spaces should be enclosed in single
quotation marks.

• Any sort field value that you do specify in the BY ROWS OVER phrase is included
in the report, whether or not there is data.

• The name of the sort field is not included in the report.

• Each report request can contain no more than one BY ROWS OVER phrase.

Sorting Tabular Reports

4-14 Information Builders

Example Defining Your Row Sort Order
To sort employees by the banks at which their paychecks are automatically deposited,
and to define your own label in the sorting sequence for the bank field, issue the
following request:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY BANK_NAME ROWS 'BEST BANK' OVER STATE
 OVER ASSOCIATED OVER 'BANK ASSOCIATION'
END

The output is:

Syntax How to Define Column Sort Sequence
ACROSS sortfield COLUMNS value1 AND value2 [... AND valuen]

where:

sortfield

Is the name of the sort field.

value1

Is the sort field value that is first in the sorting sequence.

value2

Is the sort field value that is second in the sorting sequence.

valuen

Is the sort field value that is last in the sorting sequence.

 Specifying the Sort Order

Creating Reports 4-15

Reference Usage Notes for Defining Column Sort Sequence
• Any sort field value that you do not specify in the ACROSS COLUMNS AND

phrase is not included in the label within the sorting sequence and does not appear in
the report.

• Sort field values that contain embedded blank spaces should be enclosed in single
quotation marks.

• Any sort field value that you do specify in the ACROSS COLUMNS AND phrase is
included in the report, whether or not there is data.

Example Defining Column Sort Sequence
To sum employee salaries by the bank at which they are automatically deposited, and to
define your own label within the sorting sequence for the bank field, issue the following
request:

TABLE FILE EMPLOYEE
SUM CURR_SAL
ACROSS BANK_NAME COLUMNS 'BEST BANK' AND STATE
 AND ASSOCIATED AND 'BANK ASSOCIATION'
END

The output is:

Sorting Tabular Reports

4-16 Information Builders

Grouping Numeric Data Into Ranges
When you sort a report using a numeric sort field, you can group the sort field values
together and define the range of each group.

There are two ways of defining groups:

• Defining groups of equal range using the IN-GROUPS-OF phrase.

• Defining groups of unequal range using the FOR phrase.

The FOR phrase is usually used to produce matrix reports and is part of the Financial
Modeling Language (FML). However, you can also use it to create columnar reports that
group sort field values in unequal ranges.

The FOR phrase displays the sort value for each individual row. The ranges do not have
to be contiguous—that is, you can define your ranges with gaps between them.

The FOR phrase is described in more detail in Chapter 16, Creating Financial Reports.

Syntax How to Define Groups of Equal Range
{BY|ACROSS} sortfield IN-GROUPS-OF value [TOP limit]

where:

sortfield

Is the name of the sort field. The sort field must be numeric—that is, its format must
be I (integer), F (floating-point number), D (decimal number), or P (packed number).

value

Is the range by which sort field values will be grouped.

limit

Is an optional number that defines the highest group to be included in the report.
This is a way of limiting the number of rows or columns in the report.

Reference Usage Notes for Defining Groups of Equal Range
There are several usage considerations:

• The first sort field range starts from the lowest value.

• Each report request can contain up to five IN-GROUPS-OF phrases.

• The IN-GROUPS-OF phrase can only be used once per BY field.

• The value displayed is the end point of each range.

 Grouping Numeric Data Into Ranges

Creating Reports 4-17

Example Defining Groups of Equal Ranges
To show which employees fall into which salary ranges, and to define the ranges by
$5,000 increments, issue the following report request:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY CURR_SAL IN-GROUPS-OF 5000
END

The output is:

Syntax How to Define Custom Groups of Data Values
The syntax for using the FOR phrase to sort in unequal ranges is

FOR sortfield begin1 TO end1 [OVER begin2 TO end2 ...]

where:

sortfield

Is the name of the sort field.

begin

Is a value that identifies the beginning of a range.

end

Is a value that identifies the end of a range.

Sorting Tabular Reports

4-18 Information Builders

Example Defining Custom Groups of Data Values
The following request displays employee salaries, but it groups them in an arbitrary way.
Notice that the starting value of each range prints in the report.

TABLE FILE EMPLOYEE
PRINT LAST_NAME
FOR CURR_SAL
9000 TO 13500 OVER
14000 TO 19700 OVER
19800 TO 30000
END

The output is:

 Grouping Numeric Data Into Ranges

Creating Reports 4-19

Grouping Numeric Data Into Tiles
You can group numeric data into any number of tiles (for example, percentiles or
quartiles). This enables you to answer such questions as which salesmen are in the top
half of all salesmen based on total sales, or which students are in the top ten percent
(decile) based on test scores.

Grouping data in tiles sorts data instances on a BY field in the request and then
apportions them as equally as possible into the number of tile groups you specify. The
following occurs when you group data into tiles:

• A new column (labeled TILE by default) is added to the report output and displays
the tile number assigned to each instance of the tile field. You can change the
column heading with an AS phrase.

• Tiling is calculated within all of the higher-level sort fields in the request and restarts
whenever a sort field at a higher level than the tile field’s value changes.

• Instances are counted using the tile field. If the request prints fields from lower level
segments, there may be multiple report lines that correspond to one instance of the
tile field.

• Instances with the same tile field value are placed in the same tile. For example,
consider the following data, which is to be apportioned into three tiles:

1
5
5
5
8
9

In this case, dividing the instances equally produces the following:

Group Data Values

1 1,5

2 5,5

3 8,9

However, because all of the same data values must be in the same tile, the fives (5)
that are in group 2 are moved to group 1. Group 2 remains empty. The final tiles are:

Tile Number Data Values

1 1,5,5,5

2

3 8,9

Sorting Tabular Reports

4-20 Information Builders

Syntax How to Group Numeric Data Into Tiles
BY [{HIGHEST|LOWEST} [k]] tilefield [AS 'head1']
 IN-GROUPS-OF n TILES [TOP m] [AS 'head2']

where:

HIGHEST

Sorts the data in descending order so that the highest data values are placed in tile 1.

LOWEST

Sorts the data in ascending order so that the lowest data values are placed in tile 1.
This is the default sort order.

k

Is a positive integer representing the number of tile groups to display in the report.
For example, BY HIGHEST 2 displays the two non-empty tiles with the highest data
values.

tilefield

Is the field whose values are used to assign the tile numbers.

head1

Is a heading for the column that displays the values of the tile sort field.

n

Is a positive integer not greater than 32,767 specifying the number of tiles to be used
in grouping the data. For example, 100 tiles produces percentiles, 10 tiles produces
deciles.

m

Is a positive integer indicating the highest tile value to display in the report. For
example, TOP 3 does not display any data row that is assigned a tile number greater
than 3.

head2

Is a new heading for the column that displays the tile numbers.

Note:

• The syntax accepts numbers that are not integers for k, n, and m. On MVS and VM,
values with decimals are rounded to integers; on UNIX and Windows NT they are
truncated. If the numbers supplied are negative or zero, an error message is
generated.

• Both k and m limit the number of rows displayed within each sort break in the report.
If you specify both, the more restrictive value will control the display. If k and m are
both greater than n (the number of tiles), n will be used.

 Grouping Numeric Data Into Ranges

Creating Reports 4-21

Example Grouping Data Into Five Tiles
TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LISTPR IN-GROUPS-OF 5 TILES
WHERE CATEGORY EQ 'ACTION' OR 'CHILDREN'
END

The output is:

CATEGORY LISTPR TILE TITLE
-------- ------ ---- -----
ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 19.98 4 ROBOCOP
 19.99 5 TOTAL RECALL
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI
 29.95 4 ALICE IN WONDERLAND
 SLEEPING BEAUTY
 44.95 5 SHAGGY DOG, THE

Note that the tiles are assigned within the higher-level sort field CATEGORY. The
ACTION category does not have any data assigned to tile 3. The CHILDREN category
has all five tiles.

Sorting Tabular Reports

4-22 Information Builders

Example Displaying the First Three Tile Groups
The following request prints only the first three tiles in each category:

TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LOWEST 3 LISTPR IN-GROUPS-OF 5 TILES
WHERE CATEGORY EQ 'ACTION' OR 'CHILDREN'
END

The output is:

CATEGORY LISTPR TILE TITLE
-------- ------ ---- -----
ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 19.98 4 ROBOCOP
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI

Note that the request displays three tile groups in each category. Because no data was
assigned to tile 3 in the ACTION category, tiles 1, 2, and 4 display for that category.

Example Displaying Tiles With a Value of Three or Less
In the following request, the TOP 3 phrase restricts the display to tile numbers less than
or equal to 3:

TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LOWEST 3 LISTPR IN-GROUPS-OF 5 TILES TOP 3
WHERE CATEGORY EQ 'ACTION' OR 'CHILDREN'
END

The output is:

 CATEGORY LISTPR TILE TITLE
 -------- ------ ---- -----
 ACTION 14.95 1 TOP GUN
 19.95 2 JAWS
 RAMBO III
 CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 1 ROMPER ROOM-ASK MISS MOLLY
 19.95 2 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF
 26.99 3 BAMBI

Because no data was assigned to tile 3 in the ACTION category, only tiles 1 and 2
display for that category.

 Grouping Numeric Data Into Ranges

Creating Reports 4-23

Example Grouping Data Into Tiles and Customizing Column Headings
The following request changes the column headings for both the LISTPR and TILE
columns:

TABLE FILE MOVIES
PRINT TITLE
BY CATEGORY
BY LISTPR AS 'PRICE' IN-GROUPS-OF 10 TILES TOP 3 AS 'DECILE'
WHERE CATEGORY EQ 'ACTION' OR 'CHILDREN'
END

The output is:

CATEGORY PRICE DECILE TITLE
-------- ----- ------ -----
ACTION 14.95 1 TOP GUN
 19.95 3 JAWS
 RAMBO III
CHILDREN 14.95 1 SESAME STREET-BEDTIME STORIES AND SONGS
 14.98 2 ROMPER ROOM-ASK MISS MOLLY
 19.95 3 SMURFS, THE
 SCOOBY-DOO-A DOG IN THE RUFF

Reference Usage Notes for Tiles
• If a request retrieves data from segments that are descendents of the segment

containing the tile field, multiple report rows may correspond to one instance of the
tile field. These additional report rows do not affect the number of instances used to
assign the tile values. However, if you retrieve fields from multiple segments and
create a single-segment extract file, this flat file will have multiple instances of the
tile field, and this increased number of instances may affect the tile values assigned.
Therefore, when you can run the same request against the multi-level file and the
single-segment file, different tile assignments may result.

• Tiles are always calculated on a BY sort field in the request.

• Only one tiles calculation is supported per request. However, the request can contain
up to five (the maximum allowed) non-tile IN-GROUP-OF phrases in addition to the
TILES phrase.

• Comparisons for the purpose of assigning tile numbers use exact data values
regardless of their display format. Therefore, if you display a floating-point value as
D7, you may not be showing enough significant digits to indicate why values are
placed in separate tiles.

• The tile field can be a real field or a virtual field created with a DEFINE command
or a DEFINE in the Master File. The COMPUTE command cannot be used to create
a tile field.

Sorting Tabular Reports

4-24 Information Builders

• Empty tiles do not display in the report output.

• In requests with multiple display commands, tiles are supported only at the lowest
level and only with the BY LOWEST phrase.

• Tiles are supported with extract files. However, the field used to calculate the tiles
will propagate three fields to a HOLD file unless you set HOLDLIST to
PRINTONLY.

• Tiles are not supported with BY TOTAL, TABLEF, FML, and GRAPH.

Restricting Sort Field Values by Highest/Lowest Rank
When you sort report rows using the BY phrase, you can restrict the sort field values to a
group of high or low values.

Syntax How to Restrict Sort Field Values By Highest/Lowest Rank
BY {HIGHEST n|LOWEST n} sortfield

where:

HIGHEST n

Specifies that only the highest n sort field values will be included in the report. TOP
is a synonym for HIGHEST.

LOWEST n

Specifies that only the lowest n sort field values will be included in the report.

sortfield

Is the name of the sort field. The sort field can be numeric or alphanumeric.

Reference Usage Notes for Restricting Sort Fields
• HIGHEST/LOWEST n refers to the number of sort field values, not the number of

report rows. If several records have the same sort field value that satisfies the
HIGHEST/LOWEST n criteria, all of them are included in the report.

• You can have up to five sort fields with BY HIGHEST or BY LOWEST.

 Aggregating and Sorting Report Columns

Creating Reports 4-25

Example Restricting Sort Field Values to a Group
The following request displays the names of the employees earning the five highest
salaries:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY HIGHEST 5 CURR_SAL
END

The output is:

Aggregating and Sorting Report Columns
By including the phrase BY TOTAL in a request, you can apply aggregation and sorting
simultaneously to numeric columns in your report in one pass of the data.

In addition, you can use the BY TOTAL phrase to sort based on temporary values that
are calculated by the COMPUTE command. For details, see Chapter 6, Creating
Temporary Fields.

For BY TOTAL to work correctly, you must have an aggregating display command such
as SUM. A non-aggregating display command, such as PRINT, simply retrieves the data
without aggregating it.

The records will be sorted in either ascending or descending sequence based on your
query. Ascending order is the default.

Note: On MVS and VM, the sort on the aggregated value is calculated using an external
sort package, even if EXTSORT = OFF.

Sorting Tabular Reports

4-26 Information Builders

Syntax How to Sort and Aggregate a Report Column
[RANKED] BY [HIGHEST|LOWEST [n]] TOTAL display_field

where:

RANKED

Adds a column to the report in which a rank number is assigned to each aggregated
sort value in the report output. If multiple rows have the same ranking, the rank
number only appears in the first row.

n

Is the number of sort field values you wish to display in the report. If n is omitted, all
values of the calculated sort field are displayed. Low to high order is the default.

display_field

Can be a field name, a field name preceded by an operator (that is,
prefixoperator.fieldname), or a calculated value.

A BY TOTAL field is treated as a display field when the internal matrix is created.
After the matrix is created, the output lines are aggregated and re-sorted based on all
of the sort fields.

Example Sorting and Aggregating by Report Columns
In this example, the average of the wholesale prices is calculated and used as a sort field,
and the highest two are displayed:

TABLE FILE MOVIES
SUM WHOLESALEPR CNT.WHOLESALEPR
BY CATEGORY
 BY HIGHEST 2 TOTAL AVE.WHOLESALEPR AS 'AVE.WHOLESALEPR'
 BY RATING
 WHERE CATEGORY EQ 'CLASSIC' OR 'FOREIGN' OR 'MUSICALS'
END

The output is:

 WHOLESALEPR
CATEGORY AVE.WHOLESALEPR RATING WHOLESALEPR COUNT
-------- --------------- ------ ----------- -----------
CLASSIC 40.99 G 40.99 1
 16.08 NR 160.80 10
FOREIGN 31.00 PG 62.00 2
 23.66 R 70.99 3
MUSICALS 15.00 G 15.00 1
 13.99 PG 13.99 1
 R 13.99 1

 Ranking Sort Field Values

Creating Reports 4-27

Example Aggregating and Ranking Sort Field Values
In this example, the average of the wholesale prices is calculated and used as a sort field,
the highest two are displayed and ranked.

TABLE FILE MOVIES
SUM WHOLESALEPR CNT.WHOLESALEPR
BY CATEGORY
RANKED BY HIGHEST 2 TOTAL AVE.WHOLESALEPR AS 'AVE.WHOLESALEPR'
BY RATING
WHERE CATEGORY EQ 'CLASSIC' OR 'FOREIGN' OR 'MUSICALS'
END

The output is:

 WHOLESALEPR
CATEGORY RANK AVE.WHOLESALEPR RATING WHOLESALEPR COUNT
-------- ---- --------------- ------ ----------- -----------
CLASSIC 1 40.99 G 40.99 1
 2 16.08 NR 160.80 10
FOREIGN 1 31.00 PG 62.00 2
 2 23.66 R 70.99 3
MUSICALS 1 15.00 G 15.00 1
 2 13.99 PG 13.99 1
 R 13.99 1

Ranking Sort Field Values
When you sort report rows using the BY phrase, you can indicate the numeric rank of
each row. Ranking sort field values is frequently combined with restricting sort field
values by rank.

You can rank aggregated values using the syntax RANKED BY TOTAL. For details, see
How to Sort and Aggregate a Report Column on page 4-26.

Syntax How to Rank Sort Field Values
RANKED BY sortfield

where:

sortfield

Is the name of the sort field. The field can be numeric or alphanumeric.

Reference Usage Notes for Ranking Sort Field Values
• You can replace the RANK column heading with one that you define by using the

AS phrase. For more information, see Chapter 9, Customizing Tabular Reports.

• Several report rows will have the same rank if they have identical sort field values.

Sorting Tabular Reports

4-28 Information Builders

Example Ranking Sort Field Values
Issue the following request to display a list of employee names in salary order, indicating
the rank of each employee by salary:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
RANKED BY CURR_SAL
END

The output is:

Example Ranking and Restricting Sort Field Values
Ranking sort field values is frequently combined with restricting sort field values by
rank, as in the following example:

TABLE FILE EMPLOYEE
PRINT LAST_NAME
RANKED BY HIGHEST 5 CURR_SAL
END

The output is:

 Hiding Sort Values

Creating Reports 4-29

Hiding Sort Values
When you sort a report, you can omit the sort field value itself from the report using the
phrase NOPRINT. This can be helpful in several situations, for instance, when you use
the same field as a sort field and a display field.

Syntax How to Hide Sort Values
{BY|ACROSS} sortfield {NOPRINT|SUP-PRINT}

where:

sortfield

Is the name of the sort field.

You can use SUP-PRINT as a synonym for NOPRINT.

Example Hiding Sort Values
If you want to display a list of employee names sorted in alphabetical order, the
following request is insufficient.

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
END

The output lists the names in the order that they were entered into the data source:

Sorting Tabular Reports

4-30 Information Builders

To list the employee names in alphabetical order, you would sort the LAST_NAME field
by the LAST_NAME field and hide the sort field occurrence using the phrase
NOPRINT.

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
BY LAST_NAME NOPRINT
END

This request generates the desired output:

 Sorting With Multiple Display Commands

Creating Reports 4-31

Sorting With Multiple Display Commands
A request can consist of up to sixteen sets of separate display commands (also known as
verb phrases), each with its own sort conditions. In order to display all of the
information, a meaningful relationship has to exist among the separate sort condition
sets. The following rules apply:

• Up to sixteen display commands and their associated sort conditions can be used.
The first display command does not have to have any sort condition. Only the last
display command may be a detail command, such as PRINT or LIST; other
preceding display commands must be aggregating commands.

• WHERE and IF criteria apply to the records selected for the report as a whole.
WHERE and IF criteria are explained in Chapter 5, Selecting Records for Your
Report.

• When a sort phrase is used with a display command, the display commands
following it must use the same sorting condition in the same order. For example:

TABLE FILE EMPLOYEE
SUM ED_HRS
SUM CURR_SAL CNT.CURR_SAL BY DEPARTMENT
PRINT LAST_NAME AND FIRST_NAME BY DEPARTMENT
END

The first SUM does not have a sort condition. The second SUM has a sort condition:
BY DEPARTMENT. Because of this sort condition, the PRINT command must have
the BY DEPARTMENT sort condition also.

Sorting Tabular Reports

4-32 Information Builders

Example Using Multiple Display and Sort Fields
The following request summarizes several levels of detail in the data source:

TABLE FILE EMPLOYEE
SUM CURR_SAL
SUM CURR_SAL BY DEPARTMENT
SUM CURR_SAL BY DEPARTMENT BY LAST_NAME
END

The command SUM CURR_SAL calculates the total amount of current salaries; SUM
CURR_SAL BY DEPARTMENT calculates the total amounts of current salaries in each
department; SUM CURR_SAL BY DEPARTMENT BY LAST_NAME calculates the
total amounts of current salaries for each employee name.

The output is:

 Improving Efficiency With External Sorts

Creating Reports 4-33

Improving Efficiency With External Sorts
When a report is generated, by default it is sorted using an internal sorting procedure.
This sorting procedure is optimized for reports of up to approximately 5000 records (for
example, up to 5000 lines of a tabular report).

You can generate larger reports—exceeding 5000 records—up to 75% faster by using
dedicated sorting products, such as SyncSort or DFSORT.

To use an external sort, the EXTSORT SET parameter must be ON (the default).

Note that external sorting is supported with the French, Spanish, German, and
Scandinavian National Languages. To specify the National Language Support
Environment, use the LANG parameter as described in the Developing Applications
manual.

Reference Requirements for External Sorting
You can use the following external sort products with any TABLE, FML, GRAPH, or
MATCH request:

• MVS. DFSORT and SyncSort.

• CMS. DFSORT, SyncSort, and VMSORT.

Under CMS, the sort must be 31-bit addressable.

We recommended that you issue a GLOBAL TXTLIB command to identify the
location of the sort software. If the sort program cannot be located, a GLOBAL
TXTLIB SORTLIB command is issued. If it still cannot locate the sort software, it
will terminate with the following error message:

(FOC909) CRITICAL ERROR IN EXTERNAL SORT. RETURN CODE IS:16

You will also receive an error message in CMS if your system sort is DFSORT/CMS
and your temporary disk is not large enough for your sort requirements. With
DFSORT/CMS, the maximum temporary disk that can be obtained for a 3380 device
is 16 cylinders. If this is not large enough for your sort requests, you may need to
modify the DUFMAC MACRO to allow more space for sort work files. Consult the
IBM DFSORT/CMS manual for your release of DFSORT.

Your sort product’s installation parameters are always respected.

Sorting Tabular Reports

4-34 Information Builders

Procedure How a Specific Sort Is Chosen
To determine which sort is used, the following criteria are evaluated, in this sequence:

1. BINS. If an entire report can be sorted within the work area (BINS), the external sort
is not invoked, even if EXTSORT is set ON.

2. EXTERNAL. If BINS is not large enough to sort the entire report and EXTSORT is
set ON, approximately the first 5000 records are sorted internally and the remaining
records are passed to the external sort utility.

Syntax How to Control External Sorting
You can turn the external sorting feature on and off using the SET EXTSORT command

SET EXTSORT = {ON|OFF}

where:

ON

Enables the selective use of a dedicated external sorting product to sort reports. This
value is the default.

OFF

Uses the internal sorting procedure to sort all reports.

Syntax How to Query the Sort Type
To determine which sort is being used for a given report, issue the following command
after the report request:

? STAT

The command displays the following values for the SORT USED parameter:

FOCUS

The internal sorting procedure was used to sort the entire report.

SQL

You are using a relational data source and the RDBMS sorted the report.

EXTERNAL

An external sorting product sorted the report.

Report optimization determines the scope of the external sort. The internal sorting
procedure is used to sort the first group of approximately 5000 records, and the
external sort handles the remainder.

To confirm the extent of the external sort, check the ? STAT command’s
INTERNAL MATRIX CREATED parameter. If the external sort handles the entire
report, the parameter displays NO; if the first group of records is sorted internally
and the external sort handles the remainder, it displays YES.

NONE

The report did not require sorting.

 Improving Efficiency With External Sorts

Creating Reports 4-35

Aggregation by External Sort
External sorts can be used to perform aggregation with a significant decrease in
processing time in comparison to using the internal sort facility. The gains are most
notable with relatively simple requests against large data sources.

When aggregation is performed by an external sort, the statistical variables &RECORDS
and &LINES are equal because the external sort products do not return a line count for
the answer set. This is a behavior change and affects any code that checks the value of
&LINES.

Syntax How to Use Aggregation in Your External Sort
SET EXTAGGR = aggropt

where:

aggropt

Can be one of the following:

OFF disallows aggregation by an external sort.

NOFLOAT allows aggregation if there are no floating point data fields present.

ON allows aggregation by an external sort. This value is the default.

Reference Usage Notes for Aggregating With an External Sort
• You must be using SYNCSORT or DFSORT.

• EXTAGGR cannot be set to OFF.

• Your query should be simple (that is, it should be able to take advantage of the
TABLEF facility). For related information, see Chapter 15, Improving Report
Processing.

• The PRINT display command may not be used in the query.

• SET ALL must be equal to OFF.

• Only the following column prefixes are allowed: SUM, AVG, CNT, FST.

• Columns can be calculated values or have a row total.

• CMS DFSORT does not support aggregation of numeric data types. When SET
EXTAGGR = NOFLOAT and your query aggregates numeric data, the external sort
is not called and aggregation is performed through the internal sorting procedure.

Sorting Tabular Reports

4-36 Information Builders

Example Changing Output by Using External Sorts for Aggregation
If you use SUM on an alphanumeric field in your report request without using an
external sort, the last instance of the sorted fields is displayed in the output. Turning on
aggregation in the external sort displays the first record instead.

The following command turns aggregation ON:
SET EXTAGGR = ON
TABLE FILE CAR
SUM CAR BY COUNTRY
END

The output is:

COUNTRY CAR
------- ----
ENGLAND JAGUAR
FRANCE PEUGEOT
ITALY ALFA ROMEO
JAPAN DATSUN
W GERMANY AUDI

The following command turns aggregation OFF:
SET EXTAGGR = OFF
TABLE FILE CAR
SUM CAR BY COUNTRY
END

The output is:

COUNTRY CAR
------- ---
ENGLAND TRIUMPH
FRANCE PEUGEOT
ITALY MASERATI
JAPAN TOYOTA
W GERMANY BMW

Note: The SET SUMPREFIX command in conjunction with aggregation using an
external sort also affects the order of information displayed in your report. SUMPREFIX
is described in Changing Retrieval Order With Aggregation on page 4-37.

 Improving Efficiency With External Sorts

Creating Reports 4-37

Changing Retrieval Order With Aggregation
When an external sort product performs aggregation of alphanumeric or smart date
formats, the order of the answer set returned differs from the order of the internally
sorted answer sets.

External sort products return the first alphanumeric or smart date record that was
aggregated. Conversely, internal sorting returns the last record.

The SUMPREFIX command allows users to choose the answer set display order.

Syntax How to Set Retrieval Order
SET SUMPREFIX = {LST|FST}

where:

LST

Displays the last value when alphanumeric or smart date data types are aggregated.
This value is the default.

FST

Displays the first value when alphanumeric or smart date data types are aggregated.

Using External Sorts to Extract Data
You can use external sorts to create HOLD extract files, producing savings of up to
twenty percent in processing time. The gains are most notable with relatively simple
requests against large data sources.

Syntax How to Create HOLD FILES With an External Sort
SET EXTHOLD = {OFF|ON}

where:

OFF

Disables HOLD files by an external sort.

ON

Enables HOLD files by an external sort. This value is the default.

Sorting Tabular Reports

4-38 Information Builders

Reference Usage Notes for Creating HOLD Files With External Sorts
• The default setting of EXTSORT=ON must be in effect.

• EXTHOLD must be ON.

• The request must contain a BY field.

• The request must contain ON TABLE HOLD or ON TABLE HOLD AS.

• Your query should be simple. AUTOTABLEF analyzes a query and determines
whether the combination of display commands and formatting options require the
internal matrix. In cases where it's determined that a matrix is not necessary to
satisfy the query we avoid the extra internal costs associated with creating the
matrix. The internal matrix is stored in a file or data set named FOCSORT. Its
default is ON so that performance gains may be realized.

• SET ALL must be OFF.

• There cannot be an IF/WHERE TOTAL or BY TOTAL in the request.

• If a request contains a SUM command, EXTAGGR must be set ON and the only
column prefixes allowed are SUM. and FST.

• If a request contains a PRINT command, the column prefixes allowed are MAX.,
MIN., FST., and LST.

Estimating SORTWORK Sizes for an External Sort
Usually the size of your SORTWORK files is determined when an external sort product
is installed. Large queries that use external sorts can rapidly exhaust SORTWORK space,
resulting in FOC909 errors. This problem is solved if the sorts include the parameter
'FILSZ=En' when invoked. This parameter enables the sorting algorithms to estimate
SORTWORK space requirements for each sort parameter request. ESTRECORDS is
used to pass the estimated number of records to be sorted in the request. In order to make
an accurate estimate for your ESTRECORDS setting, we suggest that you run the report
without an external sort in order to get a record count.

 Improving Efficiency With External Sorts

Creating Reports 4-39

Syntax How to Provide an Estimate of Input Records for Sorting
ON TABLE SET ESTRECORDS n

where:

n

Is the estimated number of records to be sorted.

Note:

• ESTRECORDS can only be set with the ON TABLE SET command within the
TABLE, MATCH, or GRAPH request.

• For CMS/SyncSort the ‘FILSZ=En’ parameter is ignored. Therefore, SET
ESTRECORDS n has no effect.

• If an attempt is made to SET ESTRECORDS from the command line, FOCPARM,
or PROFILE FOCEXEC, the following error is generated:

SET ESTRECORDS = n

(FOC36210) THE SPECIFIED PARAMETER CAN ONLY BE SET ON TABLE: ESTRECORDS

Displaying External Sort Messages
By default, error messages created by your external sort product are not displayed.
However, you may wish to display these messages on your screen for diagnostic
purposes. See How to Display Messages for DFSORT and SyncSort (MVS) on page 4-39.

Procedure How to Display Messages for DFSORT and SyncSort (MVS)
To display DFSORT messages:

1. Create a sequential file with these attributes:

DCB=(LRECL=80,RECFM=F,BLKSIZE=80)

2. Create the following record beginning in column 2

OPTION MSGPRT=ALL,MSGDDN=trace_name

where trace_name is any user-defined ddname.

3. Allocate the file to ddname DFSPARM.

4. Allocate the ddnames trace_name and SORTDIAG to a single file or to SYSOUT.
This ensures that all trace and diagnostic messages are written to the same file.

Sorting Tabular Reports

4-40 Information Builders

To display SyncSort messages:

1. Create a sequential file with these attributes:

DCB=(LRECL=80,RECFM=F,BLKSIZE=80)

2. Create the following record beginning in column 2:

MSG=AB,BMSG,MSGDD=trace_name,LIST

where trace_name is any user-defined ddname.

3. Allocate the file to ddname $ORTPARM.

4. Allocate the ddname trace_name to a file or to SYSOUT.

Creating Reports 5-1

CHAPTER 5

Selecting Records for Your Report

Topics:
• Choosing a Filtering Method

• Selections Based on Individual
Values

• Selection Based on Aggregate
Values

• Using Compound Expressions for
Record Selection

• Using Operators in Record Selection
Tests

• Types of Record Selection Tests

• Selections Based on Group Key
Values

• Setting Limits on the Number of
Records Read

• Selecting Records Using IF Phrases

• Reading Selection Values From a File

• Assigning Screening Conditions to a
File

• VSAM Record Selection Efficiencies

When generating a report and specifying which fields to display,
you may not want to display every instance of a field. By
including selection criteria, you can display only those field
values that meet your needs. In effect, you can select a subset of
the data—a subset that you can easily redefine each time you
issue the report request.

When developing a report request, you can define criteria that
select records based on a variety of factors:

• The values of an individual field. See Selections Based on
Individual Values on page 5-2.

• The aggregate value of a field (for example, the sum or
average of a field’s values). See Selection Based on
Aggregate Values on page 5-10.

• The existence of missing values for a field; whether a
field’s values fall within a range; whether a field does not
contain a certain value. See Types of Record Selection Tests
on page 5-16.

• The number of records that exist for a field—for example,
the first 50 records—rather than on the field’s values. See
Setting Limits on the Number of Records Read on page
5-27.

• For non-FOCUS data sources that have group keys, you can
select records based on group key values. See Selections
Based on Group Key Values on page 5-26.

In addition, you can take advantage of a variety of record
selection efficiencies, including assigning filtering criteria to a
data source and reading selection values from a file.

Selecting Records for Your Report

5-2 Information Builders

Choosing a Filtering Method
There are two phrases for selecting records: WHERE and IF. We recommend that you
use WHERE to select records; IF offers a subset of the functionality of WHERE.
Everything that you can accomplish with IF, you can also accomplish with WHERE;
WHERE can accomplish things that IF cannot.

If you used IF to select records in the past, remember that WHERE and IF are two
different phrases, and may require different syntax to achieve the same result.

WHERE syntax is described and illustrated throughout this topic. For details on IF
syntax, see Selecting Records Using IF Phrases on page 5-28.

Selections Based on Individual Values
The WHERE phrase selects the data source records to be included in a report. The data is
evaluated according to the selection criteria before it is retrieved from the data source.

You can use as many WHERE phrases as necessary to define your selection criteria. For
an illustration, see Using Multiple WHERE Phrases on page 5-4; for additional
information, see Using Compound Expressions for Record Selection on page 5-12.

Note: Multiple selection tests on fields that reside on separate paths of a multi-path data
source are processed as though connected by either AND or OR operators, based on the
setting of a parameter called MULTIPATH. For details, see Controlling Record Selection
in Multi-Path Data Sources on page 5-5.

Syntax How to Select Records With WHERE
The basic selection syntax using WHERE is
WHERE criteria [;]

where:
criteria

Are the criteria for selecting records to include in the report. The criteria must be
defined in a valid expression that evaluates as true or false (that is, a Boolean
expression). Expressions are described in detail in Chapter 8, Using Expressions.
Operators that can be used in WHERE expressions—such as CONTAINS, IS, and
GT—are described in Operators Supported for WHERE and IF Tests on page 5-13.

;

An optional semicolon can be used to enhance the readability of the request. It does
not affect the report.

 Selections Based on Individual Values

Creating Reports 5-3

Reference Usage Notes for WHERE Phrases
The WHERE phrase can include:

• Most expressions that would be valid on the right-hand side of a DEFINE
expression. However, the logical expression IF ... THEN ... ELSE cannot be used.

• Real fields, temporary fields, and fields in joined files.

• The operators EQ, NE, GE, GT, LT, LE, CONTAINS, OMITS, FROM ... TO,
NOT-FROM ... TO, INCLUDES, EXCLUDES, LIKE, and NOT LIKE.

• All arithmetic operators (+, -, *, /, **), as well as functions (MIN, MAX, ABS, and
SQRT, for example).

• An alphanumeric expression, which can be a literal, or a function yielding an
alphanumeric or numeric result using EDIT or DECODE.

Note that files used with DECODE expressions can contain two columns, one for
field values and one for numeric decode values.

• Alphanumeric and date literals enclosed in single quotation marks and date-time
literals in the form DT (date-time literal).

• All functions.

You can build complex selection criteria by joining simple expressions with AND and
OR logical operators and, optionally, adding parentheses to explicitly specify the order of
evaluation. This is easier than trying to achieve the same effect with the IF phrase, which
may require the use of a separate DEFINE command. For details, see Using Compound
Expressions for Record Selection on page 5-12.

Reference Selecting Records for Partitioned FOCUS Data Sources
When you are reporting from a partitioned FOCUS data source, if your selection criteria
are based on the same fields used to place data in the partitions, only those partitions with
relevant data will be opened for retrieval. For details on partitioned FOCUS data sources,
see the Describing Data manual.

Selecting Records for Your Report

5-4 Information Builders

Example Using a Simple WHERE Test
To show only the names and salaries of employees earning more than $20,000 a year,
issue the following request:
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME AND CURR_SAL
BY LAST_NAME NOPRINT
WHERE CURR_SAL GT 20000
END

In this example, CURR_SAL is a selected field, and CURR_SAL GT 20000 is the
selection criterion. Only those records with a current salary greater than $20,000 are
retrieved and displayed; all other records are ignored.

The output is:

Example Using Multiple WHERE Phrases
You can use as many WHERE phrases as necessary to define your selection criteria. For
example, this request uses multiple WHERE phrases.
TABLE FILE EMPLOYEE
PRINT EMP_ID LAST_NAME
WHERE SALARY GT 20000
WHERE DEPARTMENT IS 'MIS' OR 'PRODUCTION'
WHERE LAST_NAME IS 'CROSS' OR 'BANNING'
END

The output is:

For related information, see Using Compound Expressions for Record Selection on page
5-12.

 Selections Based on Individual Values

Creating Reports 5-5

Controlling Record Selection in Multi-Path Data Sources
When you report from a multi-path data source, a parent segment may have children
down some paths but not others. The MULTIPATH parameter allows you to control
whether such a parent segment is omitted from the report output.
The MULTIPATH setting also affects the processing of selection tests on independent
paths. If MULTIPATH is set to COMPOUND, WHERE or IF tests on separate paths are
treated as if they are connected by an AND operator. That is, all paths must pass the
screening tests in order for the parent to be included in the report output.
With MULTIPATH set to SIMPLE, WHERE or IF tests on separate paths are considered
independently, as if an OR operator connected them. Therefore, a parent instance is
included in the report if at least one of the paths passes its screening test. A warning
message is produced, indicating that if the request contains a test on one path, data is also
retrieved from another, independent path. Records on the independent path are retrieved
regardless of whether the condition is satisfied on the tested path.
The MULTIPATH settings apply in all types of data sources and in all reporting
environments (TABLE, TABLEF, MATCH, GRAPH, requests with multiple display
commands). MULTIPATH also works with alternate views, indexed views, filters, DBA,
and joined structures.

Syntax How to Control Record Selection in Multi-path Data Sources
To set MULTIPATH from the command level or in a stored procedure, the syntax is
SET MULTIPATH = {SIMPLE|COMPOUND}

To set MULTIPATH in a report request, the syntax is
ON TABLE SET MULTIPATH {SIMPLE|COMPOUND}

where:
SIMPLE

Includes a parent segment in the report output if:

• It has at least one child that passes its screening conditions.
Note: A unique segment is considered a part of its parent segment and,
therefore, does not invoke independent path processing.

• It lacks any referenced child on a path, but the child is optional, as described in
Rules for Determining If a Segment Is Required on page 5-9.
The (FOC144) warning message is generated when a request screens data in a
multi-path report:
(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA

SIMPLE is the default value for FOCUS for S/390.
COMPOUND

Includes a parent in the report output if it has all of its required children. WHERE or
IF tests on separate paths are treated as if they are connected by an AND operator.
That is, all paths must pass the screening tests in order for the parent to be included
in the report output.
COMPOUND is the default value for iWay and WebFOCUS.

For related information, see MULTIPATH and SET ALL Combinations on page 5-8 and
Rules for Determining If a Segment Is Required on page 5-9.

Selecting Records for Your Report

5-6 Information Builders

Reference Requirements and Usage Notes for MULTIPATH = COMPOUND
• The minimum memory requirement for the MULTIPATH = COMPOUND setting is

4K per active segment. If there is insufficient memory, the SIMPLE setting is
implemented and a message is returned.

There is no limit to the number of segment instances (rows); however, no single
segment instance can have more than 4K of active fields (referenced fields or fields
needed for retrieving referenced fields). If this limit is exceeded, the SIMPLE setting
is implemented and a message is returned.

• SET MULTIPATH = COMPOUND creates a pool boundary when reports are
pooled.

• WHERE criteria that screen on more than one path with the OR operator are not
supported.

Example Retrieving Data From Multiple Paths
This example uses the following segments from the EMPLOYEE data source:

EMPINFO

EMP_ID
LAST_NAME
FIRST_NAME

SALINFO

PAY_DATE
GROSS

ATTNDSEG

DATE_ATTEND
EMP_ID

COURSEG

COURSE_CODE
COURSE_NAME

SH1 KM

KLU

 Selections Based on Individual Values

Creating Reports 5-7

The request that follows retrieves data from both paths with MULTIPATH = SIMPLE,
and displays data if either criterion is met:
SET ALL = OFF
SET MULTIPATH = SIMPLE
TABLE FILE EMPLOYEE
PRINT GROSS DATE_ATTEND COURSE_NAME
BY LAST_NAME BY FIRST_NAME
WHERE PAY_DATE EQ 820730
WHERE COURSE_CODE EQ '103'
END

The following warning message is generated:
(FOC144) WARNING. TESTING IN INDEPENDENT SETS OF DATA

Although several employees have not taken any courses, they are included in the report
output since they have instances on one of the two paths:
LAST_NAME FIRST_NAME GROSS DATE_ATTEND COURSE_NAME
--------- ---------- ----- ----------- -----------
BLACKWOOD ROSEMARIE $1,815.00 . .
CROSS BARBARA $2,255.00 . .
GREENSPAN MARY $750.00 . .
IRVING JOAN $2,238.50 . .
JONES DIANE $1,540.00 82/05/26 BASIC REPORT PREP
MCKNIGHT ROGER $1,342.00 . .
ROMANS ANTHONY $1,760.00 . .
SMITH MARY $1,100.00 81/11/16 BASIC REPORT PREP
 RICHARD $791.67 . .
STEVENS ALFRED $916.67 . .

If you run the same request with MULTIPATH = COMPOUND, the employees without
instances for COURSE_NAME are omitted from the report output and the warning
message is not generated:
LAST_NAME FIRST_NAME GROSS DATE_ATTEND COURSE_NAME
--------- ---------- ----- ----------- -----------
JONES DIANE $1,540.00 82/05/26 BASIC REPORT PREP FOR PROG
SMITH MARY $1,100.00 81/11/16 BASIC REPORT PREP FOR PROG

Selecting Records for Your Report

5-8 Information Builders

Example MULTIPATH and SET ALL Combinations
The ALL parameter affects independent path processing. The following table uses
examples from the EMPLOYEE data source to explain the interaction of ALL and
MULTIPATH:

 MULTIPATH

Request SIMPLE COMPOUND

SET ALL = OFF
PRINT EMP_ID PAY_DATE
 DATE_ATTEND

Shows employees who have
either SALINFO data or
ATTNDSEG data.

Shows employees who
have both SALINFO
and ATTNDSEG data.

SET ALL = ON
PRINT EMP_ID PAY_DATE
 DATE_ATTEND

Shows employees who have
SALINFO data or
ATTNDSEG data or no
child data at all.

Same as SIMPLE.

SET ALL = OFF
PRINT EMP_ID PAY_DATE
 DATE_ATTEND
WHERE PAY_DATE EQ
 980115

Shows employees who have
either SALINFO data for
980115 or any ATTNDSEG
data.
Produces (FOC144)
message.

Shows employees who
have both SALINFO
data for 980115 and
ATTNDSEG data.

SET ALL = ON
PRINT EMP_ID PAY_DATE
 DATE_ATTEND
WHERE PAY_DATE EQ
 980115

Shows employees who have
either SALINFO data for
980115 or any ATTNDSEG
data.
Produces (FOC144)
message.

Shows employees who
have SALINFO data for
980115. Any
DATE_ATTEND data
is also shown.

SET ALL = OFF
PRINT ALL.EMP_ID
 DATE_ATTEND
WHERE PAY_DATE EQ
 980115

Shows employees who have
either SALINFO data for
980115 or any ATTNDSEG
data.
Produces (FOC144)
message.

Shows employees who
have SALINFO data for
980115. Any
DATE_ATTEND data
is also shown.

SET ALL = ON or OFF
PRINT EMP_ID PAY_DATE
 DATE_ATTEND
WHERE PAY_DATE EQ
 980115
 AND COURSE_CODE EQ
 '103'

Shows employees who have
either SALINFO data for
980115 or COURSE 103.
Note: SIMPLE treats the
AND in the WHERE clause
as an OR.
Produces (FOC144)
message.

Shows employees who
have both SALINFO
data for 980115 and
COURSE 103.

Note: SET ALL = PASS is not supported with MULTIPATH = COMPOUND.
For related information about the ALL parameter, see Chapter 12, Handling Records
With Missing Field Values.

 Selections Based on Individual Values

Creating Reports 5-9

Reference Rules for Determining If a Segment Is Required
The segment rule is applied level by level, descending through the data source/view
hierarchy. That is, a parent segment’s existence depends on the child segment’s existence
and the child segment depends on the grandchild’s existence, and so on for the full data
source tree.

The following rules are used to determine if a segment is required or optional:

• When SET ALL is ON or OFF, a segment with WHERE or IF criteria is required for
its parent, and all segments up to the root segment are required for their parents.

When SET ALL = PASS, a segment with WHERE or IF criteria is optional.

• IF SET ALL = ON or PASS, all referenced segments with no WHERE or IF criteria
are optional for their parents (outer join).

• IF SET ALL = OFF, all referenced segments are required (inner join).

• A referenced segment can become optional if its parent segment uses the ALL. field
prefix operator.

Note: ALL = PASS is not supported for all data adapters and, if it is supported, it may
behave slightly differently. Check your specific data adapter documentation for detailed
information.

For related information about the ALL parameter, see Chapter 12, Handling Records
With Missing Field Values, and the Describing Data manual.

Selecting Records for Your Report

5-10 Information Builders

Selection Based on Aggregate Values
You can select records based on the aggregate value of a field—for example, on the sum
of a field’s values, or on the average of a field’s values—by using the WHERE TOTAL
phrase. WHERE TOTAL is very helpful when you employ the aggregate display
commands, SUM and COUNT, and when you use any prefix operator, such as AVE. and
PCT.

In WHERE tests, data is evaluated before it is retrieved. In WHERE TOTAL tests,
however, data is selected after all the data has been retrieved and processed. For an
illustration, see Using WHERE TOTAL for Record Selection on page 5-11.

Syntax How to Select Records With WHERE TOTAL
WHERE TOTAL criteria[;]

where:
criteria

Are the criteria for selecting records to include in the report. The criteria must be
defined in a valid expression that evaluates as true or false (that is, a Boolean
expression). Expressions are described in detail in Chapter 8, Using Expressions.
Operators that can be used in WHERE expressions—such as IS and GT—are
described in Operators Supported for WHERE and IF Tests on page 5-13.

;

An optional semicolon can be used to enhance the readability of the request. It does
not affect the report.

Reference Usage Notes for WHERE TOTAL
• Any reference to a calculated value, or use of a feature that aggregates values, such

as TOT.field, AVE.field, requires the use of WHERE TOTAL.

• Fields with prefix operators require the use of WHERE TOTAL.

• WHERE TOTAL tests are performed at the lowest sort level.

• Alphanumeric and date literals must be enclosed in single quotation marks.
Date-time literals must be in the form DT(date-time literal).

• When you use ACROSS with WHERE TOTAL, data that does not satisfy the
selection criteria is represented in the report with the NODATA character.

• If you save the output from your report request in a HOLD file, the WHERE TOTAL
test creates a field called WH$$$T1, which contains its internal computations. If
there is more than one WHERE TOTAL test, each TOTAL test creates a
corresponding WH$$$T field and the fields are numbered consecutively.

• The WHERE TOTAL test cannot be specified with the IN (x,y,z) and IN FILE
phrases.

 Selection Based on Aggregate Values

Creating Reports 5-11

Example Using WHERE TOTAL for Record Selection
The following example sums current salaries by department.
TABLE FILE EMPLOYEE
SUM CURR_SAL
BY DEPARTMENT
END

The output is:

Now, add a WHERE TOTAL phrase to the request in order to generate a report that lists
only the departments where the total of the salaries is more than $110,000.
TABLE FILE EMPLOYEE
SUM CURR_SAL
BY DEPARTMENT
WHERE TOTAL CURR_SAL EXCEEDS 110000
END

The values for each department are calculated and then each final value is compared to
$110,000. The output is:

Example Combining WHERE TOTAL and WHERE for Record Selection
The following request extracts records for the MIS department. Then, CURR_SAL is
summed for each employee. If the total salary for an employee is greater than $20,000,
the values of CURR_SAL are processed for the report. In other words, WHERE TOTAL
screens data after records are selected.
TABLE FILE EMPLOYEE
SUM CURR_SAL
BY LAST_NAME AND BY FIRST_NAME
WHERE TOTAL CURR_SAL EXCEEDS 20000
WHERE DEPARTMENT IS 'MIS'
END

The output is:

Selecting Records for Your Report

5-12 Information Builders

Using Compound Expressions for Record Selection
You can combine two or more simple WHERE expressions, connected by AND and/or
OR operators, to create a compound expression.

By default, when multiple WHERE phrases are evaluated, logical ANDs are processed
before logical ORs. In compound expressions, you can use parentheses to change the
order of evaluation. All AND and OR operators enclosed in parentheses are evaluated
first, followed by AND and OR operators outside of parentheses.

This is especially useful when mixing literal OR tests with logical AND and OR tests:

• In a logical AND or OR test, all field names, test relations, and test values are
explicitly referenced and connected by the words OR or AND. For example:
WHERE (LAST_NAME EQ 'CROSS') OR (LAST_NAME EQ 'JONES')

or
WHERE (CURR_SAL GT 20000) AND (DEPARTMENT IS 'MIS')
 AND (CURR_JOBCODE CONTAINS 'A')

• In a literal OR test, the word OR is repeated between test values of a field name, but
the field name itself and the connecting relational operator are not repeated. For
example:
WHERE (LAST_NAME EQ 'CROSS' OR 'JONES')

Example Mixing AND and OR Tests
This example illustrates the impact of parentheses on the evaluation of literal ORs and
logical ANDs.

In this request, each expression enclosed in parentheses is evaluated first in the order in
which it appears. Notice that the first expression contains a literal OR. The result of each
expression is then evaluated using the logical AND.

If parentheses had been excluded, the logical AND would have been evaluated before the
literal OR.
TABLE FILE EMPLOYEE
PRINT CURR_SAL BY LAST_NAME
WHERE (LAST_NAME EQ 'CROSS' OR 'JONES')
AND (CURR_SAL GT 22000)
END

The output is:

 Using Operators in Record Selection Tests

Creating Reports 5-13

Using Operators in Record Selection Tests
You can include a variety of operators in your WHERE and IF selection tests. Many of
the operators are common for WHERE and IF; however, several are supported only for
WHERE tests. For details, see Operators Supported for WHERE and IF Tests on page
5-13.

Reference Operators Supported for WHERE and IF Tests
You can define WHERE and IF selection criteria using the following operators.

WHERE
Operator

IF Operator Meaning

EQ
IS

EQ
IS

Tests for and selects values equal to the
test expression.

NE
IS-NOT

NE
IS-NOT

Tests for and selects values not equal to
the test expression.

GE GE
FROM
IS-FROM

Tests for and selects values greater than
or equal to the test value (based on the
characters 0 to 9 for numeric values, A
to Z and a to z for alphanumeric
values).

GT
EXCEEDS
IS-MORE-THAN

GT
EXCEEDS
IS-MORE-THAN

Tests for and selects values greater than
the test value.

LT
IS-LESS-THAN

LT
IS-LESS-THAN

Tests for and selects values less than the
test value.

LE LE
TO

Tests for and selects values less than or
equal to the test value.

GE lower AND ...
LE upper

 Tests for and selects values within a
range of values.

LT lower OR ...
GT upper

 Tests for and selects values outside of a
range of values.

FROM lower
TO upper

 Tests for and selects values within a
range of values.

IS-FROM lower
TO upper

IS-FROM lower
TO upper

Tests for and selects values within a
range of values. For WHERE, this is
alternate syntax for FROM lower to
UPPER; both operators produce
identical results.

Selecting Records for Your Report

5-14 Information Builders

WHERE
Operator

IF Operator Meaning

NOT-FROM lower
TO upper

NOT-FROM lower
TO upper

Tests for and selects values that are
outside a range of values.

IS MISSING
IS-NOT MISSING
NE MISSING

IS MISSING
IS-NOT MISSING
NE MISSING

Tests whether a field contains missing
values—that is, if some instances of the
field contain no data (have missing
data). For information on missing data,
see Chapter 12, Handling Records With
Missing Field Values.

CONTAINS
LIKE

CONTAINS Tests for and selects values that include
a character string matching test value.
The string can occur in any position in
the value being tested. When used with
WHERE, CONTAINS can test
alphanumeric fields; when used with IF,
it can test both alphanumeric and text
fields.

OMITS
NOT LIKE

OMITS Tests for and selects values that do not
include a character string matching test
value. The string cannot occur in any
position in the value being tested. When
used with WHERE, OMITS can test
alphanumeric fields; when used with IF,
it can test both alphanumeric and text
fields.

INCLUDES INCLUDES Tests whether a chain of values of a
given field in a child segment includes
all of a list of literals.

EXCLUDES EXCLUDES Tests whether a chain of values of a
given field in a child segment excludes
all of a list of literals.

IN (z,x,y) Selects records based on values found
in an unordered list.

NOT ... IN
(z,x,y)

 Selects records based on values not
found in an unordered list.

IN FILE Selects records based on values stored
in a sequential file.

NOT ... IN FILE Selects records with field values not
found in a sequential file.

 Using Operators in Record Selection Tests

Creating Reports 5-15

Example Using Operators to Compare a Field to One or More Values
The following examples illustrate field selection criteria that use one or more values. You
may use the operators: EQ, IS, IS-NOT, EXCEEDS, IS-LESS-THAN, and IN.

Example 1: The field LAST_NAME must equal the value JONES:
WHERE LAST_NAME EQ 'JONES'

Example 2: The field LAST_NAME begins with ‘CR’ or ‘MC:’
WHERE EDIT (LAST_NAME, '99') EQ 'CR' OR 'MC'

Example 3: The field AREA must not equal the value EAST or WEST:
WHERE AREA IS-NOT 'EAST' OR 'WEST'

Example 4: The value of the field AREA must equal the value of the field REGION:
WHERE AREA EQ REGION

Note that you cannot compare one field to another in an IF test.

Example 5: The ratio between retail cost and dealer cost must be greater than 1.25:
WHERE RETAIL_COST/DEALER_COST GT 1.25

Example 6: The field UNITS must be equal to or less than the value 50, and AREA must
not be equal to either NORTH EAST or WEST. Note the use of single quotation marks
around NORTH EAST. All alphanumeric strings must be enclosed within single
quotation marks.
WHERE UNITS LE 50 WHERE AREA IS-NOT 'NORTH EAST' OR 'WEST'

Example 7: The value of AMOUNT must be greater than 40:
WHERE AMOUNT EXCEEDS 40

Example 8: The value of AMOUNT must be less than 50:
WHERE AMOUNT IS-LESS-THAN 50

Example 9: The value of SALES must be equal to one of the numeric values in the
unordered list. Use commas or blanks to separate the list values.
WHERE SALES IN (43000,12000,13000)

Example 10: The value of CAR must be equal to one of the alphanumeric values in the
unordered list. Single quotation marks must enclose alphanumeric list values.
WHERE CAR IN ('JENSEN','JAGUAR')

Selecting Records for Your Report

5-16 Information Builders

Types of Record Selection Tests
You can select records for your reports using a variety of tests that are implemented using
the operators described in Operators Supported for WHERE and IF Tests on page 5-13.
You can test for:

• Values that lie within or outside a range. See Range Tests With FROM and TO on
page 5-16 and Range Tests With GE and LE or GT and LT on page 5-17.

• Missing or existing data. See Missing Data Tests on page 5-19.

• The existence or absence of a character string. See Character String Screening With
CONTAINS and OMITS on page 5-19.

• Partially defined character strings in a data field. See Screening on Masked Fields
With LIKE and IS on page 5-20.

• Literals in a parent segment. See Qualifying Parent Segments Using INCLUDES and
EXCLUDES on page 5-25.

Range Tests With FROM and TO
Use the operators FROM ... TO and NOT-FROM ... TO in order to determine whether
field values fall within or outside a given range. You can use either values or expressions
to specify the lower and upper boundaries. Range tests can also be applied on the sort
control fields. The range test is specified immediately after the sort phrase.

Syntax How to Specify a Range Test (FROM and TO)
The syntax for the range test is
WHERE [TOTAL] fieldname {FROM|IS-FROM} lower TO upper
WHERE [TOTAL] fieldname NOT-FROM lower TO upper

where:
fieldname

Is any valid field name or alias.
lower

Are numeric or alphanumeric values or expressions that indicate lower boundaries.
You may add parentheses around expressions for readability.

upper

Are numeric or alphanumeric values or expressions that indicate upper boundaries.
You may add parentheses around expressions for readability.

 Types of Record Selection Tests

Creating Reports 5-17

Example Range Test With FROM ... TO
An example of a range test using expressions as boundaries follows:
WHERE SALES FROM (DEALER_COST * 1.4) TO (DEALER_COST * 2.0)

Example Range Test With NOT-FROM ... TO
This request displays only employees whose salaries do not fall between $12,000 and
$22,000:
TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME
WHERE CURR_SAL NOT-FROM 12000 TO 22000
END

The output is:

Example Range Tests on Sort Fields With FROM ... TO
The following examples demonstrate how to perform range tests when sorting a field
using the BY or ACROSS sort phrases:
BY MONTH FROM 4 TO 8

or
ACROSS MONTH FROM 6 TO 10

Range Tests With GE and LE or GT and LT
The operators GE (Greater Than or Equal to) and LE (Less Than or Equal to) can be used
to specify a range:

• GE ... LE enable you to specify values within the range test boundaries.

• LT ...GT enable you to specify values outside the range test boundaries.

Selecting Records for Your Report

5-18 Information Builders

Syntax How to Specify Range Tests (GE and LE)
To select values that fall within a range, use AND
WHERE fieldname GE lower AND fieldname LE upper

To find records whose values do not fall in a specified range, use OR
WHERE fieldname LT lower OR fieldname GT upper

where:
fieldname

Is any valid field name or alias.
lower

Are numeric or alphanumeric values or expressions that indicate lower boundaries.
You may add parentheses around expressions for readability.

upper

Are numeric or alphanumeric values or expressions that indicate upper boundaries.
You may add parentheses around expressions for readability.

Example Selecting Values Inside a Range
This WHERE phrase selects records in which the UNIT value is between 10,000 and
14,000.
WHERE UNITS GE 10000 AND UNITS LE 14000

This example is equivalent to:
WHERE UNITS GE 10000
WHERE UNITS LE 14000

Example Selecting Values Outside a Range
This request lists employees whose salaries are either less than $12,000 or greater than
$22,000.
TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME
WHERE CURR_SAL LT 12000 OR CURR_SAL GT 22000
END

The output is:

 Types of Record Selection Tests

Creating Reports 5-19

Missing Data Tests
When creating report requests, you may want to test for missing data. For this test to be
effective, fields that have missing data must have the MISSING attribute set to ON in the
Master File. For information on missing data, see Chapter 12, Handling Records With
Missing Field Values and the Describing Data manual.

Syntax How to Test for Missing Data
The syntax is
{WHERE|IF} fieldname {EQ|IS} MISSING

where:
fieldname

Is any valid field name or alias.
EQ|IS

Are record selection operators. EQ and IS are synonyms.

Syntax How to Test for Existing Data
The syntax is
{WHERE|IF} fieldname {NE|IS-NOT} MISSING

where:
fieldname

Is any valid field name or alias.
NE|IS-NOT

Are record selection operators. NE and IS-NOT are synonyms.

Character String Screening With CONTAINS and OMITS
The CONTAINS and OMITS operators test alphanumeric fields when used with
WHERE, and both alphanumeric and text fields when used with IF:

• With CONTAINS, if the characters in the given literal or literals appear anywhere
within the characters of the field value, the test is passed.

• OMITS is the opposite of CONTAINS; if the characters of the given literal or literals
appear anywhere within the characters of the field’s value, the test fails.

CONTAINS and OMITS tests are useful when the exact spelling of a value is not known.
As long as you know that a specific string appears within the value, you can retrieve the
desired data.

Selecting Records for Your Report

5-20 Information Builders

Example Selecting Records With CONTAINS and OMITS
In the first example, the characters JOHN are contained in JOHNSON and would be
selected by the following phrase:
WHERE LAST_NAME CONTAINS 'JOHN'

The field LAST_NAME may contain the characters JOHN anywhere in the field.

Note that the field name being tested must appear on the left side of the CONTAINS
operator.

In the second example, any last name without the string JOHN will be selected:
WHERE LAST_NAME OMITS 'JOHN'

In the third example, all names that contain the letters ING are displayed.
TABLE FILE EMPLOYEE
LIST LAST_NAME AND FIRST_NAME
WHERE LAST_NAME CONTAINS 'ING'
END

The output is:

Screening on Masked Fields With LIKE and IS
A mask is an alphanumeric pattern that you supply for comparison to characters in a data
field. The data field must have an alphanumeric format (A).

You can use the LIKE and NOT LIKE or the IS and IS-NOT operators to perform
screening on masked fields:

• The LIKE and NOT LIKE operators use the wildcard characters % and _. The
percent allows any following sequence of zero or more characters. The underscore
indicates that any character in that position is acceptable.

• The IS (or EQ) and IS-NOT (or NE) operators use the wildcard characters $ and $*.
The dollar sign indicates that any character in that position is acceptable. The $*
combination allows any sequence of zero or more characters. This combination can
only be used at the end of the mask.

Note: The LIKE operator is supported in expressions that are used to derive temporary
fields with either the DEFINE or the COMPUTE command.

 Types of Record Selection Tests

Creating Reports 5-21

Syntax How to Screen on Masked Fields (LIKE and NOT LIKE)
To search for records with the LIKE operator, use the syntax
WHERE field LIKE 'mask'

To reject records based on the mask value, use either
WHERE field NOT LIKE 'mask'

or
WHERE NOT field LIKE 'mask'

where:
field

Is any valid field name or alias.
mask

An alphanumeric or text character string you supply. There are two wildcard
characters that you can use in the mask: the underscore (_) indicates that any
character in that position is acceptable; the percent sign (%) allows any following
sequence of zero or more characters.

For related information, see Restrictions on Masking Characters on page 5-22.

Syntax How to Screen on Masked Fields (IS and IS-NOT)
To search for records with the IS operator, use the syntax
{WHERE|IF} field {IS|EQ} 'mask'

To reject records based on the mask value, use the syntax
{WHERE|IF} field {IS-NOT|NE} 'mask'

where:
field

Is any valid field name or alias.
IS | IS-NOT

Are record selection operators. EQ is a synonym for IS. NE is a synonym for
IS-NOT.

mask

An alphanumeric or text character string you supply. The wildcard characters that
you can use in the mask are the dollar sign ($) and the combination $*. The dollar
sign indicates that any character in that position is acceptable. The $* combination
allows any sequence of zero or more characters.

For related information, see Restrictions on Masking Characters on page 5-22.

Selecting Records for Your Report

5-22 Information Builders

Reference Restrictions on Masking Characters
• The wildcard characters dollar sign ($) and dollar sign with an asterisk ($*), which

are used with IS operators, are treated as literals with LIKE operators.

• Masking with the characters $ and $* is not supported for compound WHERE
phrases that use the AND or OR logical operators.

Example Screening on Initial Characters
To list all employees who have taken basic-level courses, where every basic course
begins with the word BASIC, issue the following request:
TABLE FILE EMPLOYEE
PRINT COURSE_NAME COURSE_CODE
BY LAST_NAME BY FIRST_NAME
WHERE COURSE_NAME LIKE 'BASIC%'
END

The output is:

Example Screening on Characters Anywhere in a Field
If you want to see which employees have taken a FOCUS course, but you do not know
where the word FOCUS appears in the title, bracket the word FOCUS with wildcards
(which is equivalent to using the CONTAINS operator):
TABLE FILE EMPLOYEE
PRINT COURSE_NAME COURSE_CODE
BY LAST_NAME BY FIRST_NAME
WHERE COURSE_NAME LIKE '%FOCUS%'
END

The output is:

 Types of Record Selection Tests

Creating Reports 5-23

If you want to list all employees who have taken a 20x-series course, and you know that
all of these courses have the same code except for the final character, issue the following
request:
TABLE FILE EMPLOYEE
PRINT COURSE_NAME COURSE_CODE
BY LAST_NAME BY FIRST_NAME
WHERE COURSE_CODE LIKE '20_'
END

The output is:

Example Screening on Initial Characters and Specific Length
The dollar sign acts as a placeholder in the following example:
TABLE FILE EMPLOYEE
PRINT LAST_NAME
WHERE LAST_NAME IS 'BAN$$$$'
END

The output is:

The selection criterion in the preceding example retrieves only last names that are seven
characters long and whose first three characters are BAN. Characters four through seven
can be anything, but the remaining characters (8 through 15) must be blank.

Example Screening on Records of Unspecified Length
To retrieve records with unspecified lengths, use the dollar sign followed by an asterisk
($*):
WHERE LAST_NAME IS 'BAN$*'

This phrase searches for last names that start with the letters BAN, regardless of the
name’s length. The characters $* reduce typing, and enable you to define a screen mask
without knowing the exact length of the field you wish to retrieve.

Selecting Records for Your Report

5-24 Information Builders

Using an Escape Character for LIKE
You can use an escape character in the LIKE syntax to treat the masking characters (%
and _) as literals within the search pattern, rather than as wildcards. This technique
enables you to search for these characters in the data. For related information, see
Screening on Masked Fields With LIKE and IS on page 5-20.

• The escape character itself can be escaped, thus becoming a normal character in a
string (for example, 'abc\%\\').

• The escape character is only in effect when the ESCAPE syntax is included in the
LIKE phrase.

• Every LIKE phrase can provide its own escape character.

Syntax How to Use the Escape Character
Any single character can be used as an escape character if prefaced with the word
ESCAPE.

The syntax is
WHERE fieldname LIKE 'mask' ESCAPE 'c'

where:
fieldname

Is any valid field name or alias to be evaluated in the selection test.
mask

Is the search pattern that you supply. The single quotation marks are required.
c

Is any single character that you identify as the escape character. If you embed the
escape character in the mask, before a % or _, the % or _ character is treated as a
literal, rather than as a wildcard. The single quotation marks are required.

Reference Usage Notes for Escape Characters
• The use of an escape character in front of any character other than %, _, and itself

will be ignored.

• Only one escape character can be used per LIKE phrase.

• If a WHERE criterion is used with literal OR phrases, the ESCAPE must be on the
first OR phrase and will apply to all subsequent phrases in that WHERE expression.
For example:
WHERE field LIKE 'ABCg_' ESCAPE 'g' OR 'ABCg%' OR 'g%ABC'

 Types of Record Selection Tests

Creating Reports 5-25

Example Using the Escape Character
The VIDEOTR2 data source contains an e-mail address field. To search for the e-mail
address with the characters 'handy_' you can issue the following request:
TABLE FILE VIDEOTR2
PRINT CUSTID LASTNAME FIRSTNAME EMAIL
WHERE EMAIL LIKE 'handy_%'
END

Because the underscore character functions as a wildcard character, this request returns
two instances, only one of which contains the underscore character.

The output is:
CUSTID LASTNAME FIRSTNAME EMAIL
------ -------- --------- -----
0944 HANDLER EVAN handy_man@usa.com
0944 HANDLER EVAN handyman@usa.com

To retrieve only the instance that contains the underscore character you must indicate that
the underscore should be treated as a normal character, not a wildcard. The following
request retrieves only the instance with the underscore character in the e-mail field:
TABLE FILE VIDEOTR2
PRINT CUSTID LASTNAME FIRSTNAME EMAIL
WHERE EMAIL LIKE 'handy_%' ESCAPE '\'
END

The output is:
CUSTID LASTNAME FIRSTNAME EMAIL
------ -------- --------- -----
0944 HANDLER EVAN handy_man@usa.com

Qualifying Parent Segments Using INCLUDES and EXCLUDES
INCLUDES and EXCLUDES work only with multi-segment FOCUS data sources. They
test whether instances of a given field in a child segment include or exclude all literals in
a list. INCLUDES and EXCLUDES retrieve only parent records. You cannot print or list
any field in the same segment as the field specified for the INCLUDES or EXCLUDES
test.

Reference Usage Notes for INCLUDE and EXCLUDES
• Literals containing embedded blanks must be enclosed in single quotation marks.

• To use more than one INCLUDES or EXCLUDES phrase in a request, begin each
phrase on a separate line.

• You can connect the literals you are testing for with ANDs and ORs, however, you
cannot create compound INCLUDES and EXCLUDES tests with logical AND and
OR operators.

Selecting Records for Your Report

5-26 Information Builders

Example Selecting Records With INCLUDES and EXCLUDES
A request that contains the phrase
WHERE JOBCODE INCLUDES A01 OR B01

will return employee records with JOBCODE instances for both A01 and B01, as if you
had used AND.

In the following example, for a record to be selected its JOBCODE field must have
values of both A01 and B01:
WHERE JOBCODE INCLUDES A01 AND B01

If either one is missing, the record will not be selected for the report.

If the selection criterion is
WHERE JOBCODE EXCLUDES A01 AND B01

every record that does not have both values is selected for the report.

In the CAR data source, only England produces Jaguars and Jensens, and so the request
TABLE FILE CAR
PRINT COUNTRY
WHERE CAR INCLUDES JAGUAR AND JENSEN
END

generates this output:

Selections Based on Group Key Values
Certain types of non-FOCUS data sources use group keys. A group key is a single key
composed of several fields. You can use a group name to refer to a group key’s fields.

To select records based on a group key value, you need to supply the value of each field.
The values must be separated by the slash character (/).

Note that a WHERE phrase that refers to a group field cannot be used in conjunction with
AND or OR. For related information see Using Compound Expressions for Record
Selection on page 5-12.

Example Selecting Records Using Group Keys
Suppose that a data source has a group key named PRODNO, which contains three
separate fields. The first is stored in alphanumeric format, the second as a packed
decimal, the third as an integer. A screening phrase on this group might be:
WHERE PRODNO EQ 'RS/62/83'

For details on working with non-FOCUS data sources, see the Describing Data manual.

 Setting Limits on the Number of Records Read

Creating Reports 5-27

Setting Limits on the Number of Records Read
For some reports, a limited number of records is satisfactory. When the specified number
of records is retrieved, record retrieval can stop. This is useful when:

• You are designing a new report, and you need only a few records from the actual
data source to test your design.

• The database administrator needs to limit the size of reports by placing an upper
limit on retrieval from very large data sources. This limit is attached to the user’s
password.

• You know the number of records that meet the test criteria. You can specify that
number so that the search does not continue beyond the last record that meets the
criteria. For example, suppose only ten employees use electronic transfer of funds
and you want to retrieve only those records. The record limit would be ten, and
retrieval would stop when the tenth record is retrieved. The data source will not be
searched any further.

Syntax How to Limit the Number of Records Read
There are two ways to limit the number of records retrieved. You can use the syntax
WHERE RECORDLIMIT EQ n

where:
n

Is a number greater than 0, and indicates the number of records to be retrieved. This
syntax can be used with FOCUS and non-FOCUS data sources.

For all non-FOCUS data sources, you can also use the syntax
WHERE READLIMIT EQ n

where:
n

Is a number greater than 0, and indicates the number of read operations (not records)
to be performed. For details, see the appropriate data adapter manual.

Tip:
If an attempt is made to apply the READLIMIT test to a FOCUS data source, the request
is processed correctly, but the READLIMIT phrase is ignored.

Selecting Records for Your Report

5-28 Information Builders

Example Limiting the Number of Records Read
The following request retrieves four records, generating a four-line report:
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME AND EMP_ID
WHERE RECORDLIMIT EQ 4
END

The output is:

Selecting Records Using IF Phrases
The IF phrase selects records to be included in a report, and offers a subset of the
functionality of WHERE. For a list of supported IF operators, see Using Operators in
Record Selection Tests on page 5-13.

Tip:
Unless you specifically require IF syntax (for example, to support legacy applications), we
recommend using WHERE.

Syntax How to Select Records Using the IF Phrase
The syntax for record selection using the IF phrase is
IF fieldname operator literal [OR literal]

where:
fieldname

Is the field you want to test (the test value).
operator

Is the type of selection operator you want. Valid operators are described in
Operators Supported for WHERE and IF Tests on page 5-13.

literal

Can be the MISSING keyword (as described in Missing Data Tests on page 5-19) or
alphanumeric or numeric values that are in your data source, with the word OR
between values.

Note that all literals that contain blanks (for example, New York City) and all date
and date-time literals must be enclosed within single quotation marks.

Note: The IF phrase alone cannot be used to create compound expressions by connecting
simple expressions with AND and OR logical operators. Compound logic requires that
the IF phrase be used with the DEFINE command, as described in Chapter 8, Using
Expressions. You can accomplish this more easily with WHERE. See Using Compound
Expressions for Record Selection on page 5-12.

 Reading Selection Values From a File

Creating Reports 5-29

Example Using Multiple IF Phrases
You can use as many IF phrases as necessary to define all your selection criteria, as
illustrated in the following example:
TABLE FILE EMPLOYEE
PRINT EMP_ID LAST_NAME
IF SALARY GT 20000
IF DEPARTMENT IS MIS
IF LAST_NAME IS CROSS OR BANNING
END

All of these criteria must be satisfied in order for a record to be included in a report. The
output is:

Reading Selection Values From a File
Instead of typing literal test values in a WHERE or IF phrase, you can store them in a file
and refer to the file in the report request. You can then select records based on equality—
or inequality—tests on values stored in the file.

This method has the following advantages:

• You can save time by coding a large set of selection values once, then using these
values as a set in as many report requests as you wish. You also ensure consistency
by maintaining the criteria in just one location.

• If the selection values already exist in a data source, you can quickly create a file of
selection values by generating a report and saving the output in a HOLD or SAVE
file. You can then read selection values from that file.

If you use a HOLD file, it must either be in BINARY format (the default) or in
ALPHA (simple character) format; if you use a SAVE file, it must be in ALPHA
format (the default). You can also use a SAVB file if the selection values are
alphanumeric. See Chapter 11, Saving and Reusing Report Output, for information
on HOLD and SAVE files.

Note that in MVS, a HOLD file in BINARY format that is used for selection values
must be allocated to ddname HOLD (the default); the other extract files used for this
purpose can be allocated to any ddname.

• You can include entries with mixed-case and special characters.

Selecting Records for Your Report

5-30 Information Builders

Syntax How to Read Selection Values From a File (WHERE)
The syntax for using WHERE to select records based on values in a file is
WHERE [NOT] fieldname IN FILE file

where:
fieldname

Is the name of the selection field. It can be any real or temporary field in the data
source being reported on.

file

Is the name of the file.
For MVS, this is the ddname assigned by a DYNAM or TSO ALLOCATE
command. On CMS, the ddname is assigned by a FILEDEF command.

For related information, see Usage Notes for Reading Values From a File on page 5-31.

Syntax How to Read Selection Values From a File (IF)
The syntax for using IF to select records based on values in a file is
IF fieldname operator (file) [OR (file) ...]

where:
fieldname

Is any valid field name or alias.
operator

Is the EQ, IS, NE, or IS-NOT operator (see Operators Supported for WHERE and IF
Tests on page 5-13).

file

Is the name of the file.

For MVS, this is the ddname assigned by a DYNAM or TSO ALLOCATE
command.
For CMS, this is the ddname assigned by a FILEDEF command.

For related information, see Usage Notes for Reading Values From a File on page 5-31.

 Reading Selection Values From a File

Creating Reports 5-31

Reference Usage Notes for Reading Values From a File
In order to read selection criteria from a file, the file must comply with the following
rules:

• Each value in the file must be on a separate line.

For IF, more information can appear on a line, but only the first data value
encountered on the line is used.

• The selection value must start in column one.

• The values are assumed to be in character format, unless the file name is HOLD, and
numeric digits are converted to internal computational numbers where needed (for
example, binary integer).

• For IF, the total of all files can be up to 32,767 literals, including new line and other
formatting characters. Lower limits apply to fixed sequential and other non-relational
data sources.

• For WHERE, the file can be approximately 16,000 bytes. If the file is too large, an
error message displays.

• For WHERE, alphanumeric values with embedded blanks or any mathematical
operator (-, +, *, /) must be enclosed in single quotation marks.

• For WHERE, when a compound WHERE phrase uses IN FILE more than once, the
specified files must have the same record formats.

If your list of literals is too large, an error is displayed.

• For IF, sets of file names may be used, separated by the word OR. Also, actual
literals may be mixed with the file names. For example:
IF fieldname operator (filename) OR literal...etc...

Example Reading Selection Values From a File (WHERE)
Create a file named EXPER, which contains the values B141 and B142.

This request uses selection criteria from the file EXPER. All records for which
PRODUCT_ID has a value of B141 or B142 will be selected:
TABLE FILE GGPRODS
SUM UNIT_PRICE
BY PRODUCT_DESCRIPTION
WHERE PRODUCT_ID IN FILE EXPER
END

If you include the selection criteria directly in the request, the WHERE phrase would
specify the values explicitly:
WHERE PRODUCT_DESCRIPTION EQ 'B141' or 'B142'

The output is:

Product

Unit
Price

French Roast 81.00
Hazelnut 58.00

Selecting Records for Your Report

5-32 Information Builders

Example Reading Selection Values From a File (IF)
The following request
TABLE FILE GGPRODS
SUM UNIT_PRICE
BY PRODUCT_DESCRIPTION
IF PRODUCT_ID IS (EXPER)
END

together with the EXPER file containing the following records
B141
B142

generates this output:
 Unit
Product Price
------- -----
French Roast 81.00
Hazelnut 58.00

The value of PRODUCT_ID is compared to the values in the EXPER file for the
selection criterion.

Assigning Screening Conditions to a File
You can assign screening conditions to a data source, independent of a request, and
activate these screening conditions for use in report requests against the data source.

A filter is a packet of definitions that resides at the file level, containing WHERE and/or
IF criteria. Whenever a report request is issued against a data source, all filters that have
been activated for that data source are in effect. WHERE or IF syntax that is valid in a
report request is also valid in a filter.

A filter can be declared at any time before the report request is run. The filters are
available to subsequent requests during the session in which the filters have been run. For
details, see How to Declare a Filter on page 5-33.

Filters allow you to:

• Declare a common set of screening conditions that apply each time you retrieve data
from a data source. You can declare one or more filters for a data source.

• Declare a set of screening conditions and dynamically turn them on and off.

• Restrict access to data without specifying rules in the Master File.

In an interactive environment, filters also reduce repetitive ad hoc typing.

Note: Simply declaring a filter for a data source does not make it active. A filter must be
activated with a SET command. For details, see How to Activate or Deactivate Filters on
page 5-35.

 Assigning Screening Conditions to a File

Creating Reports 5-33

Syntax How to Declare a Filter
A filter can be described by the following declaration
 FILTER FILE filename [CLEAR|ADD]
 [filter-defines;]
 NAME=filtername1 [,DESC=text]
 where-if phrases
 .
 .
 .
 NAME=filternamen [,DESC=text]
 where-if phrases
 END

where:
filename

Is the name of the Master File to which the filters apply.
ADD/CLEAR

ADD enables you to add new filter phrases to an existing filter declaration, without
clearing previously defined filters.
CLEAR deletes any existing filter phrases, including any previously defined virtual
fields.

filter-defines

Are virtual fields declared for use in filters. For more information, see Usage Notes
for Virtual Fields Used in Filters on page 5-34.

filtername1...filternamen

Is the name by which the filter is referenced in subsequent SET FILTER commands.
This name may be up to eight characters and must be unique for a particular file
name.

text

Describes the filter for documentation purposes. Text must fit on one line.
where-if phrases

Are screening conditions that can include all valid syntax. They may refer to data
source fields and virtual fields in the Master File; they may not refer to virtual fields
declared using a DEFINE command. They may not refer to other filter names.

Selecting Records for Your Report

5-34 Information Builders

Reference Usage Notes for Virtual Fields Used in Filters
Virtual fields used in filters:

• Are exclusively local to (or usable by) filters in a specific filter declaration.

• Cannot be referenced in a DEFINE or TABLE command.

• Support any syntax valid for virtual fields in a DEFINE command.

• Cannot reference virtual fields in a DEFINE command, but can reference virtual
fields in the Master File.

• Do not count toward the display field limit, unlike virtual fields in DEFINE
commands.

• Must all be declared before the first named filter.

• Must each end with a semi-colon.

• Cannot be enclosed between the DEFINE FILE and END commands.

Example Declaring Filters
The first example creates the filter named UK, which consists of one WHERE condition.
It also adds a definition for the virtual field MARK_UP to the set of virtual fields already
being used in filters for the CAR data source.
When a report request is issued for CAR, with UK activated, the condition WHERE
MARK_UP is greater than 1000 is automatically added to the request.
Note: The virtual field MARK_UP cannot be explicitly displayed or referenced in the
TABLE request.
FILTER FILE CAR ADD
MARK_UP/D7=RCOST-DCOST;
NAME=UK
WHERE MARK_UP GT 1000
END

The second example declares three named filters for the CAR data source: ASIA, UK,
and LUXURY. The filter ASIA contains a textual description, for documentation
purposes only. CLEAR, on the first line, erases any previously existing filters for CAR,
as well any previously defined virtual fields used in filters for CAR, before it processes
the new definitions.
FILTER FILE CAR CLEAR
NAME=ASIA,DESC=Asian cars only
IF COUNTRY EQ JAPAN
NAME=UK
IF COUNTRY EQ ENGLAND
NAME=LUXURY
IF RETAIL_COST GT 50000
END

 Assigning Screening Conditions to a File

Creating Reports 5-35

Syntax How to Activate or Deactivate Filters
Filters can be activated and deactivated with the command
SET FILTER= {*|xx[yy zz]} IN file {ON|OFF}

where:
*

Denotes all declared filters (default).
xx, yy, zz

Are the names of filters as declared in the NAME = syntax of the FILTER FILE
command.

file

Is the name of the data source you are assigning screening conditions to.
ON|OFF

ON activates all (*) or specifically named filters for the data source. The maximum
number of filters you can activate for a data source is limited by the number of
WHERE/IF phrases the filters contain, not to exceed the limit of WHERE/IF criteria
in any single report request.
OFF deactivates (*) or specifically named filters for the data source. This value is the
default.

Note: The SET FILTER command is limited to one line. To activate more filters than fit
on one line, issue additional SET FILTER commands. As long as you specify ON, the
effect is cumulative.

Example Activating and Deactivating Filters
The following commands activate A, B, C, D, E, F and deactivate G (assuming that it
was set ON previously):
SET FILTER = A B C IN CAR ON
SET FILTER = D E F IN CAR ON
SET FILTER = G IN CAR OFF

The following commands activate some filters and deactivate others:
SET FILTER = UK LUXURY IN CAR ON
...
TABLE FILE CAR
PRINT COUNTRY MODEL RETAIL_COST
END
...
SET FILTER = LUXURY IN CAR OFF
TABLE FILE CAR
PRINT COUNTRY MODEL RETAIL_COST
END

The first SET FILTER command activates the filters UK and LUXURY, assigned to the
CAR data source, and applies their screening conditions to any subsequent report request
against the CAR data source.
The second SET FILTER command deactivates the filter LUXURY for the CAR data
source. Unless LUXURY is reactivated, any subsequent report request against CAR will
not apply the conditions in LUXURY, but will continue to apply UK.

Selecting Records for Your Report

5-36 Information Builders

Syntax How to Query the Status of Filters
You can determine the status of existing filters using the syntax
? FILTER [{file|*}] [SET] [ALL]]

where:
file

Is the name of a Master File.
*

Displays filters for all Master Files for which filters have been declared.
SET

Displays only active filters.
ALL

Displays all information about the filter, including its description and the exact
WHERE/IF definition.

Example Querying Filters
To query filters, issue the following command:
FILTER FILE CAR CLEAR
NAME=BOTH, DESC=Asian and British cars only
IF COUNTRY EQ JAPAN AND ENGLAND
END
SET FILTER =BOTH IN CAR ON
TABLE FILE CAR
PRINT CAR RETAIL_COST
BY COUNTRY
END

The output is:
COUNTRY CAR RETAIL_COST
ENGLAND JAGUAR 8,878
 JAGUAR 13,491
 JENSEN 17,850
 TRIUMPH 5,100
JAPAN DATSUN 3,139
 TOYOTA 3,339

 Assigning Screening Conditions to a File

Creating Reports 5-37

The following is an example of querying filters for all data sources:
? FILTER

If no filters are defined, the following message displays
NO FILTERS DEFINED

If filters are defined, the following screen displays:
Set File Filter name Description
--- -------- ----------- -----------------------------------
 CAR ROB Rob's selections
* CAR PETER Peter’s selections for CAR
* EMPLOYEE DAVE Dave’s tests
 EMPLOYEE BRAD Brad’s tests

To query filters for the CAR data source, issue:
? FILTER CAR

If no filters are defined for the CAR data source, the following message displays
NO FILTERS DEFINED FOR FILE NAMED CAR

If filters are defined for the CAR data source, the following screen displays:
Set File Filter name Description
--- -------- ----------- -----------------------------------
 CAR ROB Rob's selections
* CAR PETER Peter’s selections for CAR

To see all active filters, issue the following command
? FILTER * SET

The output is:
Set File Filter name Description
--- -------- ----------- -----------------------------------
* CAR PETER Peter’s selections for CAR
* EMPLOYEE DAVE Dave’s tests

The asterisk in the first column indicates that a filter is activated.

Selecting Records for Your Report

5-38 Information Builders

Applying Filters to Joined Structures
When you report against a joined structure using a host file name, none of the original
filters are active. Once the join is in effect, if you declare filters for the host file name,
they apply to the joined structure and remain in effect as long as the join is in effect.
When the join is cleared, the original filters for the host file are reactivated.
If you use the cross-referenced file name in a request, its activated filters are
implemented. For related information see Chapter 13, Joining Data Sources.
-*****************************
-* JOIN AND FILTER INTERACTION
-*****************************

-* DECLARE A FILTER
FILTER FILE EMPLOYEE CLEAR
 NAME=XXX WHERE JOBCODE EQ 'A01'
END
SET FILTER = XXX IN EMPLOYEE ON
-* EMPLOYEE FILE SHOWS JOBCODE A01 ONLY
TABLE FILE EMPLOYEE PRINT EMP_ID JOBCODE
END
-* ---
-* NOW JOIN TO JOBFILE AND REDECLARE THE SAME FILTER WITH A DIFFERENT
JOBCODE
-* ---
JOIN JOBCODE IN EMPLOYEE TO JOBCODE IN JOBFILE
FILTER FILE EMPLOYEE
 NAME=XXX WHERE JOBCODE EQ 'A07'
END
-* (NOTE: NEW FILTER FOR JOIN STRUCTURE IS NOT ACTIVATED YET)
-* EMPLOYEE FILE SHOWS **ALL** JOBCODES (ORIGINAL FILTER TURNED OFF BY
JOIN)
TABLE FILE EMPLOYEE PRINT EMP_ID JOBCODE
END
-* ---
-* NOW TURN ON THE NEW FILTER THAT APPLIES TO THE JOIN STRUCTURE
-* ---
SET FILTER = XXX IN EMPLOYEE ON
-* SHOWS JOBCODE A07 (NOT A01) (NEW FILTER APPLIES TO JOIN ONLY)
TABLE FILE EMPLOYEE PRINT EMP_ID JOBCODE
END
-* NOW CLEAR THE JOIN TO RE-ESTABLISH THE ORIGINAL FILTER
JOIN CLEAR *
-* NOW SHOWS JOBCODE A01 ONLY, AS BEFORE (ORIGINAL FILTER REACTIVATED)
TABLE FILE EMPLOYEE PRINT EMP_ID JOBCODE
END

 VSAM Record Selection Efficiencies

Creating Reports 5-39

VSAM Record Selection Efficiencies
The most efficient way to retrieve selected records from a VSAM KSDS data source is
by applying an IF screening test against the primary key. This results in a direct read of
the data using the data source’s index. Only those records that you request are retrieved
from the file. The alternative method of retrieval, the sequential read, forces the data
adapter to retrieve all the records into storage.

Selection criteria that are based on the entire primary key, or on a subset of the primary
key, cause direct reads using the index. A partial key is any contiguous part of the
primary key beginning with the first byte.

IF selection tests performed against virtual fields can take advantage of these efficiencies
as well, if the full or partial key is embedded in the virtual field.

The EQ and IS relations realize the greatest performance improvement over sequential
reads. When testing on a partial key, they retrieve only the first segment instance of the
screening value. To retrieve subsequent instances, NEXT logic is used.

Screening relations GE, FROM, FROM-TO, GT, EXCEEDS, IS-MORE-THAN, and
NOT-FROM-TO all obtain some benefit from direct reads. The following example uses
the index to find the record containing primary key value 66:
IF keyfield GE 66

Then, it continues to retrieve records by sequential processing because VSAM stores
records in ascending key sequence. The direct read is not attempted when the IF
screening conditions NE, IS-NOT, CONTAINS, OMITS, LT, IS-LESS-THAN, LE, and
NOT-FROM are used in the report request.

Reporting From Files With Alternate Indexes
Similar performance improvement is available for ESDS and KSDS files that use
alternate indexes. An alternate index provides access to records in a key sequenced data
set based on a key other than the primary key.

All benefits and limitations inherent with screening on the primary or partial key are
applicable to screening on the alternate index or partial alternate index. For a discussion
of these efficiencies, refer to VSAM Record Selection Efficiencies on page 5-39.

Note: It is not necessary to take an explicit indexed view to use the index.

Creating Reports 6-1

CHAPTER 6

Creating Temporary Fields

Topics:
• The Difference Between DEFINE and

COMPUTE

• Defining a Virtual Field

• Computing Calculated Values

• Calculating Trend Values and
Forecasts

• Using Functions With Temporary Fields

• Creating Temporary Fields Unrelated
to Master Files

Frequently, a report requires information that does not exist in a
data source, but can be derived from data source fields. You can
derive this information by creating a temporary field.

A temporary field does not take up any storage space in the data
source; it is created only when needed. The value of a temporary
field is the result of an expression. An expression combines
fields, constants, and operators to produce a single value. You
can specify the operations yourself, or you can use the many
supplied functions to perform specific calculations or
manipulations. In addition, you can use expressions and
functions as building blocks for more complex expressions, as
well as use one temporary field to evaluate another.

You can create the following types of temporary fields:

• Virtual fields, by issuing a DEFINE command or by
including a DEFINE attribute in a Master File. See Defining
a Virtual Field on page 6-4.

• Calculated values, by issuing a COMPUTE command. See
Computing Calculated Values on page 6-11.

• Virtual fields that are independent of a Master File using a
DEFINE function. See Creating Temporary Fields
Unrelated to Master Files on page 6-33.

In addition to being used for reporting, temporary fields can be
created for other applications, such as Dialogue Manager stored
procedures. See the Developing Applications manual for details.

Creating Temporary Fields

6-2 Information Builders

The Difference Between DEFINE and COMPUTE
The major difference between DEFINE and COMPUTE is the point of execution:

• A virtual field (DEFINE) is evaluated as each record that meets the selection criteria
is retrieved from the data source. The result of the expression is treated as though it
were a real field stored in the data source. A virtual field is in effect until it is cleared
or the session ends.

• A calculated value (COMPUTE), works on the results of a SUM, PRINT, or
COUNT command for a specific report request. The value is calculated after all the
data that meets the selection criteria is retrieved, sorted, and summed. The
calculation, therefore, is performed using the aggregated values of the fields
referenced in the COMPUTE command.

The following diagram illustrates when and how a request processes DEFINE and
COMPUTE commands:

1. Locates the Master Files and data sources.

2. Selects records based on data values (IF, WHERE).

3. Determines values of virtual fields derived
with the DEFINE command.

4. Selects records based on virtual field values (IF, WHERE).

5. Sorts the data.

6. Prepares individual and/or aggregate values (applies display command).

7. Determines calculated values derived
with the COMPUTE command.

8. Applies IF TOTAL or WHERE TOTAL tests.

9. Formats the report.

10. Routes the report to screen, printer, or file.

Record-by-record
processing against data
source values (create the
internal matrix)

Processing against
the internal matrix

 The Difference Between DEFINE and COMPUTE

Creating Reports 6-3

Example Distinguishing Between DEFINE and COMPUTE
The difference between DEFINE and COMPUTE is best illustrated using a SUM
command in the request:
DEFINE FILE SALES
DRATIO = DELIVER_AMT/OPENING_AMT;
END

TABLE FILE SALES
SUM DELIVER_AMT AND OPENING_AMT AND DRATIO
COMPUTE CRATIO = DELIVER_AMT/OPENING_AMT;
END

The same expression is used to evaluate both the virtual field, DRATIO, and the
calculated value, CRATIO, but their results are very different:
DELIVER_AMT OPENING_AMT DRATIO CRATIO

----------- ----------- ------ ------

 760 724 28.41 1.05

The value for CRATIO is calculated after all records have been selected, sorted, and
aggregated. The calculation is performed using the aggregated values of the fields that it
references. The virtual field DRATIO is calculated on each retrieved record.

Reference Number of Temporary Fields Allowed
Temporary fields created by either the DEFINE or COMPUTE command are dependent
on the amount of memory available and are counted against the maximum number of
display fields. Their command syntax accepts the same types of valid expressions. For
details on determining the maximum number of display fields that can be used in a
request, see Chapter 1, Creating Tabular Reports.

Creating Temporary Fields

6-4 Information Builders

Defining a Virtual Field
The DEFINE command creates virtual fields that may then be used in a request as though
they were real data source fields.

The calculation that determines the value of a virtual field is performed on each retrieved
record that passes any screening conditions on real fields. The result of the expression is
treated as though it were a real field stored in the data source.

The virtual field is in effect for the duration of the session in which it is issued, unless
cleared by:

• A DEFINE FILE filename CLEAR command.

• A subsequent DEFINE command—without the ADD phrase—against the same data
source.

• A JOIN command.

In addition to using the DEFINE command, you can declare virtual fields in a Master
File. These virtual fields are available whenever the data source is used for reporting. The
FIELDNAME SET parameter determines whether virtual fields in the Master File can
refer to fields located in different segments. Fields created with the DEFINE command
can refer to virtual fields in the Master File. Unlike fields created with the DEFINE
command, virtual fields in the Master File are not cleared by JOIN or DEFINE FILE
filename CLEAR commands.

Syntax How to Create a Virtual Field
Specify the DEFINE command before you begin a report request.
DEFINE FILE filename[.view_fieldname] [CLEAR|ADD]

fieldname[/format]=expression;
fieldname[/format][WITH realfield]=expression;
fieldname[/format] REDEFINES qualifier.fieldname=expression;
.
.
.
END

where:
filename

Is the name of the data source for which you are defining the virtual field.

If the report request specifies an alternate view, use filename in conjunction with
view_fieldname.

Note that all of the fields used to define the virtual field must lie on a single path in
the data source. If they do not, you can use an alternate view, which requires
alternate view DEFINE commands. For an alternate view, virtual fields cannot have
qualified field names or field names that exceed the 12-character limit. For
information on alternate views, see Chapter 15, Improving Report Processing.

 Defining a Virtual Field

Creating Reports 6-5

view_fieldname

Is the field on which an alternate view is based in the corresponding request. You
may need to use an alternate view if the fields used do not lie on a single path in the
normal view.

CLEAR

Clears previously defined virtual fields associated with the specified data source.
This value is the default.

ADD

Enables you to specify additional virtual fields for a data source without releasing
any existing virtual fields. Omitting ADD produces the same results as the CLEAR
option.

fieldname

Is a name of up to 66 characters. Indexed field names must be less than or equal to
12 characters. It can be the name of a new virtual field that you are defining or an
existing field declared in the Master File, which you want to redefine.

The name can include any combination of letters, digits, and underscores (_) and
should begin with a letter.

Do not use field names of the type Cn, En, or Xn (where n is any sequence of one or
two digits) because they are reserved for other uses.

format

Is the format of the field. All formats except text fields (TX) are allowed. The default
value is D12.2. For information on field formats, see the Describing Data manual.

WITH realfield

Associates a virtual field with a data source segment containing a real field. For more
information see Usage Notes for Creating Virtual Fields on page 6-6.

REDEFINES qualifier.fieldname

Enables you to redefine or recompute a field whose name exists in more than one
segment.

expression

Can be an arithmetic or logical expression or function, evaluated to establish the
value of fieldname (see Chapter 8, Using Expressions). You must end each
expression with a semicolon except the last one, where the semicolon is optional.

Fields in the expression can be real data fields, data fields in data sources that are
cross-referenced or joined, or previously defined virtual fields. For related
information see Usage Notes for Creating Virtual Fields on page 6-6.

END

Is required to end the DEFINE FILE command.

Creating Temporary Fields

6-6 Information Builders

Reference Usage Notes for Creating Virtual Fields
• When a JOIN is issued for a data source, all pre-existing virtual fields for that data

source are cleared except those defined in the Master File. This may affect virtual
fields used in an expression.

• To join structures using a virtual field, make sure the DEFINE follows the JOIN
command. See Chapter 13, Joining Data Sources, for an explanation of reporting on
joined data sources.

• Virtual fields declared in a Master File are not affected by the DEFINE FILE
filename CLEAR command.

• If no field in the expression is in the Master File or has been defined, use the WITH
command to identify the logical home of the defined calculation. See Establishing a
Segment Location for a Virtual Field on page 6-8.

• WITH can be used to move the logical home for the virtual field to a lower segment
than it would otherwise be assigned to (for example, to count instances in a lower
segment).

• You may define fields simultaneously (in addition to fields defined in the Master
File) for as many data sources as desired. The total length of all virtual fields and real
fields cannot exceed 16,000 characters. This limit may be increased at installation
time. Please refer to your installation guide. For WebFOCUS the total length of all
virtual fields and real fields cannot exceed 32,000 characters.

• When you specify virtual fields in a request, they count toward the display field
limit. For details on determining the maximum number of display fields that can be
used in a request, see Chapter 1, Creating Tabular Reports.

• Virtual fields are only available when the data source is used for reporting. Virtual
fields cannot be used with MODIFY.

• A DEFINE may not contain qualified field names on the left-hand side of the
expression. If the same field name exists in more than one segment, and that field
must be redefined or recomputed, use the REDEFINES command.

• When the value of SET FIELDNAME is changed, virtual fields are cleared. For
details see the Developing Applications manual.

• Using a self-referencing DEFINE such as x=x+1 disables AUTOPATH (see the
Developing Applications manual).

 Defining a Virtual Field

Creating Reports 6-7

Example Defining a Virtual Field
In the following request, the value of RATIO is calculated by dividing the value of
DELIVER_AMT by OPENING_AMT. The DEFINE command creates RATIO as a
virtual field, which is used in the request as though it were a real field in the data source:
DEFINE FILE SALES
RATIO = DELIVER_AMT/OPENING_AMT;
END

TABLE FILE SALES
PRINT DELIVER_AMT AND OPENING_AMT AND RATIO
WHERE DELIVER_AMT GT 50
END

The output is:

Defining Multiple Virtual Fields
You may wish to have more than one DEFINE command referring to the same data
source and to use some or all of the virtual fields in the request. The ADD option enables
you to specify additional virtual fields without clearing existing ones. If you omit the
ADD option, previously defined virtual fields in that data source are cleared.

If you want to clear a virtual field for a particular data source, use the CLEAR option.

ADD and CLEAR options are useful when you are executing requests from stored
procedures or are creating interactive stored procedures (explained in the Developing
Applications manual). To see which virtual fields are available, use the ? DEFINE
command described in the Developing Applications manual.

Creating Temporary Fields

6-8 Information Builders

Example Adding and Clearing Virtual Fields
The following annotated example illustrates the use of the ADD and CLEAR options for
virtual fields:
1. DEFINE FILE CAR
 ETYPE/A2=DECODE STANDARD (OHV O OHC O ELSE L);
 END

2. DEFINE FILE CAR ADD
 TAX/D8.2=IF MPG LT 15 THEN .06*RCOST
 ELSE .04*RCOST;
 FCOST = RCOST+TAX;
 END

3. DEFINE FILE CAR CLEAR
 COST = RCOST-DCOST;
 END

1. The first DEFINE command creates the ETYPE virtual field for the CAR data
source. For information about the DECODE function, see the Developing
Applications manual.

2. Two more virtual fields, TAX and FCOST, are created for the CAR data source. The
ADD option allows you to reference ETYPE, TAX, and FCOST in future requests.

3. The CLEAR option clears the three previously defined virtual fields and only the
COST virtual field in the last DEFINE is available for further requests.

Establishing a Segment Location for a Virtual Field
Virtual fields have a logical location in the data source structure just like permanent data
source fields. The logical home of a virtual field is on the lowest segment that has to be
accessed in order to evaluate the expression. The logical home of a virtual field
determines its time of execution. Consider the following data source structure and the
following DEFINE command:

STORE_CODE

PROD_CODE
UNIT_SOLD
RETAIL_PRICE
DELIVER_AMT
RATIO

RATIO = DELIVER_AMT/RETAIL_PRICE ;

The expression for RATIO includes at least one real data source field. As far as report
capabilities are concerned, the field RATIO is just like a real field in the Master File and
is located in the lowest segment.

 Defining a Virtual Field

Creating Reports 6-9

In some applications, you can have a virtual field evaluated by an expression that
contains no real data source fields. Such an expression might refer to only temporary
fields or literals. For example,
NCOUNT/I5 = NCOUNT+1;

or
DATE/YMD = '19990101';

Since neither expression contains a data source field (NCOUNT and the literal do not
exist in the Master File), their logical position in the data source cannot be determined.
You have to specify in which segment you want them to be placed. To associate a virtual
field with a specific segment, use the WITH phrase. The field name following WITH
may be any real field in the Master File.

For example, the field NCOUNT is placed in the same segment as UNITS. NCOUNT is
calculated each time a new segment instance is retrieved.
DEFINE FILE GGSALES
NCOUNT/I5 WITH UNITS = NCOUNT+1;
END

You may be able to increase the retrieval speed with an external index on the virtual
field. In this case, you can associate the index with a target segment outside of the
segment containing the virtual field. See the Developing Applications manual for more
information on external indexes.

Defining Virtual Fields Using a Multi-Path Data Source
The expression of a virtual field may include fields from all segments of a data source,
but they must lie in a unique top-to-bottom path. Different virtual fields may, of course,
lie along different paths. For example, consider the following data source structure:

EMPLOYEE

PAYDATE
GROSSSALARY

This data source structure would not permit you to write the following expression:
NEWAMT = SALARY+GROSS;

The expression is invalid because the structure implies that there can be several
SALARY segments for a given EMPLOYEE and it is not clear which SALARY to
associate with which GROSS.

To accomplish such an operation, you can use the alternate view option explained in
Chapter 15, Improving Report Processing.

Creating Temporary Fields

6-10 Information Builders

Increasing the Speed of DEFINE Calculations
Calculations for DEFINE are fully compiled, by default, into machine code when the
request is parsed. The machine code is then executed to perform the calculations at run
time. This increases the speed and efficiency of your calculations.

Certain calculations are ineligible for compilation:

• Calculations that involve any function (for example, user functions), except for
EDIT, DECODE, and LAST.

• Calculations that test for existing data (IF field IS-NOT MISSING) or that result in a
missing field (TEMP/A4 MISSING ON= ...).

• Calculations that involve fields with date formats. (See the table of date formats in
the FORMAT attribute description in the Describing Data manual.)

• Calculations that use exponentiation (10**2).

In earlier product releases, calculations for DEFINE were converted to an internal form
and interpreted at execution time. The ineligible calculations listed above are
automatically processed using this conversion logic.

To prevent compilation into machine code, apply the following SET option before
issuing a DEFINE command:
SET COMPUTE = OLD

Calculations are processed by the conversion logic until the session ends or the SET
option is changed back to NEW. OLD requires less memory but takes longer to execute.
See the Developing Applications manual for information about SET COMPUTE.

Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN
Occasionally, new code needs to be added to an existing application. When adding code,
there is always the possibility of over-writing existing virtual fields by reusing their
names inadvertently.

The DEFINE FILE SAVE command forms a new context for virtual fields, which can
then be removed with DEFINE FILE RETURN. Each new context creates a new layer or
command environment. When you first enter the new environment, all of the virtual
fields defined in the previous layer are available in the new layer. Overwriting or clearing
a virtual field definition affects only the current layer. When you return to the previous
layer using DEFINE FILE RETURN, its virtual field definitions are intact.

Therefore, all the virtual fields that are created in the new application can be removed
before returning to the calling application, without affecting existing virtual fields in that
application.

For an example of DEFINE FILE SAVE and DEFINE FILE RETURE, see Chapter 13,
Joining Data Sources.

Note: A JOIN command can be issued after a DEFINE FILE SAVE command. However,
in order to clear the join context, you must issue a JOIN CLEAR command if the join is
still in effect. If only virtual fields and DEFINE FILE ADD were issued after a DEFINE
FILE SAVE command, you can clear them by issuing a DEFINE FILE RETURN
command.

 Computing Calculated Values

Creating Reports 6-11

Syntax How to Protect Virtual Fields From Being Over-Written
DEFINE FILE filename SAVE
fld1/format1=expression1 ...
fld2/format2=expression2 ...
END...
TABLE FILE filename ...
MODIFY FILE filename ...
DEFINE FILE filename RETURN

where:
SAVE

Creates a new context for virtual fields.
filename

Is the name of the Master File that gets a new context and has the subsequent virtual
fields applied before the DEFINE FILE RETURN command is issued.

RETURN

Clears the current context if it was created by DEFINE FILE SAVE and restores the
previous context.

Computing Calculated Values
The COMPUTE command calculates one or more temporary fields in the request. Values
calculated by the COMPUTE command are available for only the specified report
request.

A calculated value works on the results of a SUM, PRINT, or COUNT command, and is
calculated after all records have been selected, sorted, and summed. The column
calculation, therefore, is performed using the summed field values of the fields that it
references.

Creating Temporary Fields

6-12 Information Builders

Syntax How to Calculate a Field Value
You specify the COMPUTE command in the body of the report request, following the
display command, and optionally introduced by AND. You can compute more than one
field with a single COMPUTE command. Following are a number of syntax variations
that can be used separately or in combination.

To compute one or more new columns:
COMPUTE fld1 [/format]= expression;[AS 'title']
COMPUTE fld2 [/format]= expression;[AS 'title']

To suppress the display of a calculated column:
COMPUTE fld1 [/format]= expression; NOPRINT
COMPUTE fld2 [/format]= expression; NOPRINT

To position the calculated column:
COMPUTE fld1 [/format]= expression;[IN [+]n]
COMPUTE fld2 [/format]= expression;[IN [+]n]

To allocate a column without a calculation:
COMPUTE fld1 [/format]= ;
 fld2 [/format]= ;
where:
fld[1…2…]

Is the name of the calculated value.

The name can be up to 66 characters long and can include any combination of letters,
digits, and underscores (_), and should begin with a letter. Other characters are not
recommended and may cause problems in some operating environments or when
resolving expressions.

Do not use field names of the type Cn, En, and Xn (where n is any sequence of one
or two digits) because they are reserved for other uses.

format

Is the format of the field. All formats except text fields (TX) are allowed. The default
is D12.2. For information on formats, see the Describing Data manual.

expression

Can be an arithmetic and/or logical expression or function (see Chapter 8, Using
Expressions). Each field used in the expression must be part of the request. Each
expression must end with a semicolon.

NOPRINT

Suppresses the printing of the field. For more information, see Chapter 9,
Customizing Tabular Reports.

AS 'title'

Changes the name of the calculated value. For more information, see in Chapter 9,
Customizing Tabular Reports.

IN

Specifies the location of the column. For more information, see Chapter 9,
Customizing Tabular Reports.

 Computing Calculated Values

Creating Reports 6-13

Reference Usage Notes for Calculated Field Values
• If you specify any optional COMPUTE phrases (such as, AS, IN, or NORPINT), and

you compute additional fields following these phrases, you must repeat the
commands COMPUTE or AND COMPUTE before specifying the additional fields.

• You can rename and justify column totals and row totals. See the examples in
Chapter 7, Including Totals and Subtotals.

• Expressions in a COMPUTE command can include fields with prefix operators (see
Chapter 2, Displaying Report Data). For more information on valid expressions, see
Chapter 8, Using Expressions.

• Fields referred to in a COMPUTE command are counted toward the display field
limit and appear in the internal matrix, unless they have been previously referenced.
For details on determining the maximum number of display fields that can be used in
a request, see Chapter 1, Creating Tabular Reports.

Example Calculating a Field Value
In the following example, the COMPUTE command creates a temporary field
REVENUE based on the product of UNIT_SOLD and RETAIL_PRICE and displays
information for New York City. The format D12.2M indicates the field format for
REVENUE and the AS command changes the default column headings for UNIT_SOLD
and RETAIL_PRICE. REVENUE is only available for this report request.
TABLE FILE SALES
HEADING CENTER
"NEW YORK PROFIT REPORT"
" "
SUM UNIT_SOLD AS 'UNITS,SOLD' RETAIL_PRICE AS 'RETAIL,PRICE'
COMPUTE REVENUE/D12.2M = UNIT_SOLD * RETAIL_PRICE;
BY PROD_CODE AS 'PROD,CODE'
WHERE CITY EQ 'NEW YORK'
END

The output is:
 NEW YORK PROFIT REPORT

PROD UNITS RETAIL
CODE SOLD PRICE REVENUE
---- ----- ------ -------
B10 30 $.85 $25.50
B17 20 $1.89 $37.80
B20 15 $1.99 $29.85
C17 12 $2.09 $25.08
D12 20 $2.09 $41.80

Creating Temporary Fields

6-14 Information Builders

Using Positional Column Referencing With Calculated Values
In a COMPUTE command, it is sometimes convenient to refer to a field by its report
column position rather than its name. This option is especially useful when the same field
is specified for several report columns.

Column referencing becomes essential when using the same field name in a variety of
ways. The columns produced by display commands (whether displayed or not) can be
referred to as C1 for the first column, C2 for the second column, and so forth. The BY
field columns are not counted.

Example Using Positional Column Referencing
The following example demonstrates positional field references in a COMPUTE:
TABLE FILE CAR
SUM AVE.DEALER_COST
SUM AVE.DEALER_COST AND COMPUTE RATIO=C1/C2;
BY COUNTRY
END

The columns produced by display commands can be referred to as C1 for the first column
(AVE.DEALER_COST), C2 for the second column (AVE.DEALER_COST BY
COUNTRY), and so forth. The BY field columns are not counted.

The output is:

 Computing Calculated Values

Creating Reports 6-15

Using COMPUTE and ACROSS
If the COMPUTE command is part of a display command, a new column is calculated for
each set of field values.

If the COMPUTE command is issued right after an ACROSS phrase, only a recap type of
the calculation is performed once for all columns.

Example Using Compute as Part of a Display Command
TABLE FILE SALES
SUM UNIT_SOLD COMPUTE NEWVAL = UNIT_SOLD * RETAIL_PRICE;
ACROSS CITY
END

The first page of output is:

Example Using COMPUTE After an ACROSS Phrase
TABLE FILE SALES
SUM UNIT_SOLD AND RETURNS
WHERE DATE GE '010' AND DATE LE '1031'
ACROSS DATE
COMPUTE
TOT_UNITS/D5=C1 + C3 + C5;
TOT_RETURNS = C2 + C4 + C6;
END

C1, C2, C3, C4, C5, and C6 are positional column references.

The output is:

Sorting Calculated Values
You can sort a report by either a virtual field or a calculated value. To sort by a calculated
value, you must use the BY TOTAL phrase in your request. For details see Chapter 4,
Sorting Tabular Reports.

Creating Temporary Fields

6-16 Information Builders

Screening on Calculated Values
You can screen on values produced by COMPUTE commands by using the WHERE
TOTAL test, as described in Chapter 5, Selecting Records for Your Report.

Example Screening on Calculated Values
The following example illustrates how to screen on values produced by a COMPUTE
command. The selection is performed using WHERE TOTAL, a requirement for
screening on a calculated value.
TABLE FILE SALES
PRINT UNIT_SOLD
AND COMPUTE NEWSALES = UNIT_SOLD * 1.1;
BY CITY
WHERE TOTAL NEWSALES GT 10
END

The output is:

 Calculating Trend Values and Forecasts

Creating Reports 6-17

Calculating Trend Values and Forecasts
The FORECAST feature allows you to uncover trends in numeric data. Depending on the
options you specify, it can also provide predicted values beyond the range of the values
stored in the data source.

The methods available for calculating trend values are:

• Simple moving average (MOVAVE). This method calculates a series of arithmetic
means using a user-specified number of values from a report column. For details, see
Using a Simple Moving Average on page 6-21.

• Exponential moving average (EXPAVE). This method calculates a weighted average
between the previously calculated value of the average and the next data point. For
details, see Using an Exponential Moving Average on page 6-25.

• Linear regression analysis (REGRESS). This method derives the coefficients of a
straight line that best fits the data points and uses this linear equation to estimate
values. For details, see Using a Linear Regression Equation on page 6-27.

To generate predicted values, FORECAST continues the same calculations beyond the
data points by using the generated trend values as new data points. For the REGRESS
technique, the calculated regression equation is used to derive trend and predicted values.

FORECAST Processing
You invoke FORECAST using a special version of the ON sortfield RECAP command.
In this command you specify the parameters needed for generating estimated values,
including the field to be used in the calculations, the method to use, and the number of
predictions to generate. The RECAP field can be a new field or it can be the same field
used in the FORECAST calculations:

• If the RECAP field is the same as the field being used to generate the FORECAST
calculations, it is referred to as a recursive FORECAST. In this case, the original
field is not printed, even if it was referenced in the display command, and the
RECAP column contains the original field values followed by the number of
predicted values specified in the FORECAST syntax. No trend values display in the
report. However, the original column will be propagated to an output file unless you
set HOLDLIST to PRINTONLY

• If the RECAP field is a new field, the original field and the new field both display in
the report output (if the original field was mentioned in the display command). This
is referred to as a non-recursive FORECAST. The new field will contain trend
values (estimated values within the range of the existing data points) and, depending
on the arguments you supply, forecast values (predictions beyond the range of the
existing data points).

Creating Temporary Fields

6-18 Information Builders

The sort field used for FORECAST must be a numeric or smart date field. FORECAST
operates on the last ACROSS field in the request. If the request contains no ACROSS
fields, it operates on the last BY field. However, to use an ACROSS field with
FORECAST the display command must be SUM (or its synonyms, ADD or WRITE) or
COUNT. The display command cannot be PRINT or LIST. The FORECAST calculations
start over when the highest-level sort field changes its value. In a request with multiple
display commands, FORECAST operates on the last ACROSS field (or if there are no
ACROSS fields, the last BY field) of the last display command.

Although you pass parameters to FORECAST using an argument list in parentheses,
FORECAST is not a function. It can coexist with a user-written subroutine of the same
name, as long as the user-written subroutine is not specified in a RECAP command.

Syntax How to Use FORECAST
The following syntax is for the MOVAVE and EXPAVE methods:
ON sfld RECAP fld1[/fmt] = FORECAST(fld2, interval, npredict,
'method',npoint);

The following syntax is for the REGRESS method (omits the npoint parameter):
ON sfld RECAP fld1[/fmt] = FORECAST(fld2, interval, npredict, 'REGRESS');

where:
sfld

Is the last ACROSS field in the request and must be a numeric or smart date field. If
the request contains no ACROSS phrases, FORECAST works on the last BY field.
However, FORECAST is only supported with ACROSS when the display command
is SUM, WRITE, ADD, or COUNT.

fld1

Is a numeric field. It can be a real field, a virtual field, or a calculated field.

Note: The word FORECAST and the opening parenthesis must be on the same line
as the syntax fld1=.

fmt

Is the display format for fld1. If it is omitted, the default format is D12.2. Even if fld1
was previously reformatted using a DEFINE or COMPUTE command, the format
specified in the RECAP command is respected.

fld2

Is any numeric field. If it is the same as fld1 (recursive), the predicted values will be
appended to the report column after the data values. The original column is not
printed in the report. If it is a different name than fld1 (non-recursive), this new
column will be calculated containing both trend values (estimated values within the
range of the existing data points) and, if you specify a non-zero number of
predictions, forecast values (predictions beyond the range of the existing data
points), while retaining the original field as a separate report column, if it was
referenced in the display command.

 Calculating Trend Values and Forecasts

Creating Reports 6-19

interval

Is the increment to add to each sfld value (after the last data point) to get to the next.
It must be a positive whole number. To sort in descending order, use the BY
HIGHEST phrase. The result of adding this number to the sfld values will be
converted to the same format as sfld.

For date fields, the minimal component in the format determines how the number is
interpreted. For example, if the format is YMD, MDY, or DMY, an interval value of
2 is interpreted as meaning two days; if the format is YM, the 2 is interpreted as
meaning two months.

npredict

Is the number of predictions for FORECAST to calculate. It must be a whole number
greater than or equal to zero. Zero indicates that you want no predictions. Zero is
only supported when the RECAP field is a new field (non-recursive), not the same
field used as the first parameter to FORECAST. If you supply a number that is not a
whole number, the fractional portion is dropped.

method

Is the estimation method to use. It can be one of the following values enclosed in
single quotation marks:

Method Definition

MOVAVE Simple moving average

EXPAVE Exponentially smoothed moving average

REGRESS Linear regression

npoint

Is a positive whole number that specifies the number of values to average for the
MOVAVE method. For EXPAVE, this number is used to calculate the weights for
each component in the average. This parameter must be specified for MOVAVE and
EXPAVE and omitted for REGRESS. If you supply a number that is not a whole
number, the fractional portion is dropped.

Creating Temporary Fields

6-20 Information Builders

Reference Usage Notes for FORECAST
• For averages, data values should be evenly spaced in order to get meaningful results.

• The RECAP command used with FORECAST can contain only the FORECAST
syntax. FORECAST does not recognize any syntax after the closing semicolon (;).
To specify options such as AS or IN:

• If it a non-recursive FORECAST request (creates a new field), use an empty
COMPUTE command prior to the RECAP.

• If it is a recursive FORECAST request, specify the options when the field is first
referenced in the report request.

• FORECAST operates on the last ACROSS field, and if the request contains no
ACROSS phrases, FORECAST operates on the last BY field.

• FORECAST is only supported for ACROSS fields if the display command is SUM,
COUNT, WRITE, or ADD. You cannot use FORECAST on an ACROSS field if the
display command is LIST or PRINT.

• In a request with multiple display commands, FORECAST must be applied to the
last ACROSS field (or if there are no ACROSS fields, the last BY field) in the last
display command. If you use FORECAST to recalculate a field in the request, the
original value of the field will be used everywhere except in the columns displayed
by the last display command in the request.

• BY TOTAL is not supported.

• MORE, MATCH, FOR, and OVER are not supported.

• The LINES and RECORDS statistics are affected by FORECAST.

• The process of generating the FORECAST values creates extra columns that are not
printed in the report output. The number and placement of these additional columns
varies depending on the specific request. Therefore, use of column notation is not
supported in a request that includes FORECAST.

• SUMMARIZE and RECOMPUTE are not supported for the same sort field used for
FORECAST.

• FORECAST is not supported for the FOCUS GRAPH facility; it is supported for the
iWay GRAPH facility.

• A request can contain up to seven non-FORECAST RECAP commands and up to
seven additional FORECAST RECAP commands.

• The left side of a RECAP command used for FORECAST supports the CURR
attribute for currency conversions. The MISSING attribute is not supported in the
RECAP command.

• A request that creates a new field using the REGRESS method with the SUM
command produces a regression based on the detail data values, not the summed
values. This is not true if the REGRESS method is used to replace an existing field.

 Calculating Trend Values and Forecasts

Creating Reports 6-21

Forecasting Methods
The methods available with FORECAST may sometimes be used to predict values
outside the range of the existing data points. However, these methods are not always
reliable predictors. Many factors determine how accurate a prediction will be. The
FORECAST operation performs the calculations based on the data provided. Decisions
about their use and reliability are the user’s responsibility.

Using a Simple Moving Average
A simple moving average is a series of arithmetic means calculated with a user-specified
number of values, n, from a report column. Each new mean in the series is calculated by
dropping the first value used in the prior calculation and adding the next data value to the
calculation.

Simple moving averages are sometimes used to analyze trends in stock prices over time.
In this scenario, the average is calculated using n periods worth of stock prices. A
disadvantage to this indicator is that because it drops the oldest values from the
calculation as it moves on in time, it loses its memory over time. Also, mean values are
distorted by extreme highs and lows and give equal weight to each point.

Predicted values beyond the range of the data values are calculated using a moving
average that treats the calculated trend values as new data points.

The first complete moving average occurs at the nth data point because the calculation
requires n values. This is called the lag. The moving average values for the lag rows are
calculated as follows: the first value in the moving average column is equal to the first
data value, the second value in the moving average column is the average of the first two
data values, and so on until the nth row at which point there are enough values to
calculate the moving average with the number of values specified.

Creating Temporary Fields

6-22 Information Builders

Example Calculating a New Simple Moving Average Column
This request defines an integer value named PERIOD to use as the independent variable
for the moving average. It predicts three periods of values beyond the range of the
retrieved data.
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
 ON PERIOD RECAP MOVAVE/D10.1= FORECAST(DOLLARS,1,3,'MOVAVE',3);
END

The output is:
Category PERIOD Unit Sales Dollar Sales MOVAVE
-------- ------ ---------- ------------ ------
Coffee 1 61666 801123 801,123.0
 2 54870 682340 741,731.5
 3 61608 765078 749,513.7
 4 57050 691274 712,897.3
 5 59229 720444 725,598.7
 6 58466 742457 718,058.3
 7 60771 747253 736,718.0
 8 54633 655896 715,202.0
 9 57829 730327 711,158.7
 10 57012 724412 703,545.0
 11 51110 620264 691,667.7
 12 58981 762328 702,334.7
 13 0 0 694,975.6
 14 0 0 719,879.4
 15 0 0 705,729.9
Food 1 54394 672727 672,727.0
 2 54894 699073 685,900.0
 3 52713 642802 671,534.0
 4 58026 718514 686,796.3
 5 53289 660740 674,018.7
 6 58742 734705 704,653.0
 7 60127 760586 718,677.0
 8 55622 695235 730,175.3
 9 55787 683140 712,987.0
 10 57340 713768 697,381.0
 11 57459 710139 702,349.0
 12 57290 705315 709,740.7
 13 0 0 708,398.2
 14 0 0 707,818.0
 15 0 0 708,652.3

 Calculating Trend Values and Forecasts

Creating Reports 6-23

Note:

• The number of values to use in the average is 3.

• Three predicted values of MOVAVE are calculated within each value of
CATEGORY. For values outside the range of the data, new PERIOD values are
generated by adding the interval value (1) to the prior PERIOD value

• There are no UNITS or DOLLARS values for the generated PERIOD values.

• Each average (MOVAVE value) is computed using DOLLARS values where they
exist. For predicted values beyond those points, the calculated MOVAVE values are
used as new data points to continue the moving average, PERIOD is the independent
variable (x) and MOVAVE is the dependent variable (y).

The first MOVAVE value (801,123.0) is equal to the first DOLLARS value.

The second MOVAVE value (741,731.5) is the mean of DOLLARS values one and
two: (801123 + 682340) /2.

The third MOVAVE value (749,513.7) is the mean of DOLLARS values one
through three: (801123 + 682340 + 765078) / 3.

The fourth MOVAVE value (712,897.3) is the mean of DOLLARS values two
through four: (682340 + 765078 + 691274) /3.

The predicted MOVAVE values (starting with 694,975.6 for PERIOD 13) are
calculated using the previous MOVAVE values as new data points. For example, the
first predicted value (694,975.6) is the average of the data points from periods 11 and
12 (620,264 and 762328) and the moving average for period 12 (702334.7). The
calculation is: 694,975 = (620,264 + 762328 + 702334.7)/3.

Creating Temporary Fields

6-24 Information Builders

Example Using an Existing Field as a Simple Moving Average Column
The following is the same request as the example Calculating a New Simple Moving
Average Column on page 6-22, but uses the same name for the RECAP field as the first
argument in the FORECAST parameter list. The trend values do not display in the report.
The actual data values for DOLLARS are followed by the predicted values in the report
column.
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
 ON PERIOD RECAP DOLLARS/D10.1 = FORECAST(
 DOLLARS,1,3,'MOVAVE',3);
END

The output is:
Category PERIOD Unit Sales DOLLARS
-------- ------ ---------- -------
Coffee 1 61666 801,123.0
 2 54870 682,340.0
 3 61608 765,078.0
 4 57050 691,274.0
 5 59229 720,444.0
 6 58466 742,457.0
 7 60771 747,253.0
 8 54633 655,896.0
 9 57829 730,327.0
 10 57012 724,412.0
 11 51110 620,264.0
 12 58981 762,328.0
 13 0 694,975.6
 14 0 719,879.4
 15 0 705,729.9
Food 1 54394 672,727.0
 2 54894 699,073.0
 3 52713 642,802.0
 4 58026 718,514.0
 5 53289 660,740.0
 6 58742 734,705.0
 7 60127 760,586.0
 8 55622 695,235.0
 9 55787 683,140.0
 10 57340 713,768.0
 11 57459 710,139.0
 12 57290 705,315.0
 13 0 708,398.2
 14 0 707,818.0
 15 0 708,652.3

 Calculating Trend Values and Forecasts

Creating Reports 6-25

Using an Exponential Moving Average
This method calculates an average that allows you to choose weights to apply to newer
and older values.

The weight given to the newest value is k, where:
k = 2 / (1+n)

The quantity n is an integer greater than one. Increasing n increases the weight assigned
to the earlier observations (or data instances) as compared to the later ones.

The next calculation of the exponential moving average (EMA) value is derived by the
following formula:
EMA = (EMA * (1-k)) + (datavalue * k)

This means that the newest value from the data source is multiplied by the factor k and
the current moving average is multiplied by the factor (1-k). These quantities are then
summed to generate the new EMA.

Note: When the data values are exhausted, the last average calculated is used as the next
data value, making every predicted value a constant equal to the last calculated average.

Example Calculating a New Exponential Moving Average Column
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM UNITS DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY NE 'Gifts'
 ON PERIOD RECAP EXPAVE/D10.1= FORECAST(DOLLARS,1,3,'EXPAVE',3);
END

Creating Temporary Fields

6-26 Information Builders

The output is:
Category PERIOD Unit Sales Dollar Sales EXPAVE
-------- ------ ---------- ------------ ------
Coffee 1 61666 801123 801,123.0
 2 54870 682340 741,731.5
 3 61608 765078 753,404.8
 4 57050 691274 722,339.4
 5 59229 720444 721,391.7
 6 58466 742457 731,924.3
 7 60771 747253 739,588.7
 8 54633 655896 697,742.3
 9 57829 730327 714,034.7
 10 57012 724412 719,223.3
 11 51110 620264 669,743.7
 12 58981 762328 716,035.8
 13 0 0 716,035.8
 14 0 0 716,035.8
 15 0 0 716,035.8
Food 1 54394 672727 672,727.0
 2 54894 699073 685,900.0
 3 52713 642802 664,351.0
 4 58026 718514 691,432.5
 5 53289 660740 676,086.3
 6 58742 734705 705,395.6
 7 60127 760586 732,990.8
 8 55622 695235 714,112.9
 9 55787 683140 698,626.5
 10 57340 713768 706,197.2
 11 57459 710139 708,168.1
 12 57290 705315 706,741.6
 13 0 0 706,741.6
 14 0 0 706,741.6
 15 0 0 706,741.6

Note:

• The number n, which is used to calculate the weights is 3.

• Three predicted values of EXPAVE are calculated within each value of
CATEGORY. For values outside the range of the data, new PERIOD values are
generated by adding the interval value (1) to the prior PERIOD value.

• There are no UNITS or DOLLARS values for the generated PERIOD values.

 Calculating Trend Values and Forecasts

Creating Reports 6-27

• Each average is computed using DOLLARS values where they exist. For predicted
values beyond those points, the calculated EXPAVE values are used as new data
points in the exponential average calculation.

The first EXPAVE value (801,123.0) is the same as the first DOLLARS value.

The second EXPAVE value (741,731.5) is calculated as follows. Note that because
of rounding and the number of decimal places used, the value derived in this sample
calculation varies slightly from the one displayed in the report output:
n=3 (number used to calculate weights)

k = 2/(1+n) = 2/4 = 0.5

EXPAVE = (EXPAVE*(1-k))+(new-DOLLARS*k) = (801123*0.5) + (682340*0.50)
 = 400561.5 + 341170 = 741731.5

The third EXPAVE value (753,404.8) is calculated as follows:
EXPAVE = (EXPAVE*(1-k))+(new-DOLLARS*k) = (741731.5*0.5)+(765078*0.50)
 = 370865.75 + 382539 = 753404.75

The predicted EXPAVE values (starting with 706,741.6) are calculated using the
same formula as used to calculate the trend values. However, an exponential average
is always calculated using the previous average and the new data point. Because the
previous average is also used as the new data point, the predicted values are always
equal to the last trend value. For example, for period 13, the previous average is
706,741.6 and this is also used as the next data point, therefore, the average is
calculated as follows:
(706,741.6 * 0.5) + (706,741.6 * 0.5) = 706,741.6
EXPAVE = (EXPAVE * (1-k)) + (new-DOLLARS * k) = (706741.6*0.5) +
 (706741.6*0.50) = 353370.8 + 353370.8 = 706741.6

Using a Linear Regression Equation
This method estimates values by assuming that the dependent variable (y, the new
calculated values) and the independent variable (x, the sort field values) are related by the
following function, which represents a straight line:
y = mx + b

The value of m represents the slope of the line, and b represents the y-intercept.

REGRESS uses a technique called Ordinary Least Squares to calculate values for m and b
that minimize the sum of the squared differences between the data and the resulting line.

The following formulas show how m and b are calculated. In these formulas, n is the
number of data points, the y values are the data values (dependent variable), and the x
values are the sort field values (independent variable):
m = (�xy - (�x * �y)/n) / (�x

2
 - (�x)

2
/n)

b = (�y)/n - (m * (�x)/n)

Trend values as well as predicted values are calculated using the regression line equation.

Creating Temporary Fields

6-28 Information Builders

Example Calculating a New Linear Regression Field
TABLE FILE CAR
PRINT MPG
BY DEALER_COST
WHERE MPG NE 0.0
 ON DEALER_COST RECAP FORMPG=FORECAST(MPG,1000,3,'REGRESS');
END

The output is:
DEALER_COST MPG FORMPG
----------- --- ------
 2,886 27 25.51
 4,292 25 23.65
 4,631 21 23.20
 4,915 21 22.82
 5,063 23 22.63
 5,660 21 21.83
 21 21.83
 5,800 24 21.65
 6,000 24 21.38
 7,427 16 19.49
 8,300 18 18.33
 8,400 18 18.20
 10,000 18 16.08
 11,000 18 14.75
 11,194 9 14.50
 14,940 11 9.53
 15,940 0 8.21
 16,940 0 6.88
 17,940 0 5.55

Note:

• Three predicted values of FORMPG are calculated. For values outside the range of
the data, new DEALER_COST values are generated by adding the interval value
(1,000) to the prior DEALER_COST value.

• There are no MPG values for the generated DEALER_COST values.

 Calculating Trend Values and Forecasts

Creating Reports 6-29

• Each FORMPG value is computed using a regression line calculated using all of the
actual data values for MPG.

DEALER_COST is the independent variable (x) and MPG is the dependent variable
(y). The equation is used to calculate MPGFORECAST trend and predicted values.

In this case, the equation is approximately as follows:
FORMPG = (-0.001323 * DEALER_COST) + 29.32

The predicted values are (the values are not exactly as calculated by FORECAST
because of rounding, but they show the process of calculating the values):

DEALER_COST Calculation FORMPG

15,940 (-0.001323 * 15,940) + 29.32 8.23

16,940 (-0.001323 * 16,940) + 29.32 6.91

17,940 (-0.001323 * 17,940) + 29.32 5.59

FORECAST Reporting Techniques
You can use FORECAST multiple times in one request. However, the FORECAST
requests must all specify the same sort field, interval, and number of predictions. Only
the RECAP field, method, field used to calculate the FORECAST values, and number of
points to average can change. If you change any of the other parameters, the new
parameters are ignored.

If you want to move a FORECAST column in the report output, use an empty
COMPUTE command for the FORECAST field as a placeholder. The data type (I, F, P,
D) must be the same in the COMPUTE command and the RECAP command.

To make the report output easier to interpret, you can create a field that indicates whether
the FORECAST value in each row is a predicted value. To do this, define a virtual field
whose value is always a constant other than zero. Rows in the report output that represent
actual records in the data source will display this constant. Rows that represent predicted
values will display zero. You can also propagate this field to a HOLD file.

Creating Temporary Fields

6-30 Information Builders

Example Generating Multiple FORECAST Columns in a Request
This example calculates moving averages and exponential averages for both the
DOLLARS and BUDDOLLARS fields in the GGSALES data source. The sort field,
interval, and number of predictions are the same for all of the calculations.
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
 SUM DOLLARS AS 'DOLLARS' BUDDOLLARS AS 'BUDGET'
 BY CATEGORY NOPRINT BY PERIOD AS 'PER'
 WHERE SYEAR EQ 97 AND CATEGORY EQ 'Coffee'
 ON PERIOD RECAP DOLMOVAVE/D10.1= FORECAST(DOLLARS,1,0,'MOVAVE',3);
 ON PERIOD RECAP DOLEXPAVE/D10.1= FORECAST(DOLLARS,1,0,'EXPAVE',4);
 ON PERIOD RECAP BUDMOVAVE/D10.1 = FORECAST(BUDDOLLARS,1,0,'MOVAVE',3);
 ON PERIOD RECAP BUDEXPAVE/D10.1 = FORECAST(BUDDOLLARS,1,0,'EXPAVE',4);
END

The output is:
PER DOLLARS BUDGET DOLMOVAVE DOLEXPAVE BUDMOVAVE BUDEXPAVE
--- ------- ------ --------- --------- --------- ---------
 1 801123 801375 801,123.0 801,123.0 801,375.0 801,375.0
 2 682340 725117 741,731.5 753,609.8 763,246.0 770,871.8
 3 765078 810367 749,513.7 758,197.1 778,953.0 786,669.9
 4 691274 717688 712,897.3 731,427.8 751,057.3 759,077.1
 5 720444 739999 725,598.7 727,034.3 756,018.0 751,445.9
 6 742457 742586 718,058.3 733,203.4 733,424.3 747,901.9
 7 747253 773146 736,718.0 738,823.2 751,910.3 757,999.6
 8 655896 685170 715,202.0 705,652.3 733,634.0 728,867.7
 9 730327 753760 711,158.7 715,522.2 737,358.7 738,824.6
 10 724412 709397 703,545.0 719,078.1 716,109.0 727,053.6
 11 620264 630452 691,667.7 679,552.5 697,869.7 688,413.0
 12 762328 718837 702,334.7 712,662.7 686,228.7 700,582.6

 Calculating Trend Values and Forecasts

Creating Reports 6-31

Example Moving the FORECAST Column
The following example places the DOLLARS field after the MOVAVE field by using an
empty COMPUTE command as a placeholder for the MOVAVE field. Both the
COMPUTE command and the RECAP command specify formats for MOVAVE (of the
same data type), but the format on the RECAP command takes precedence.
DEFINE FILE GGSALES
 SDATE/YYM = DATE;
 SYEAR/Y = SDATE;
 SMONTH/M = SDATE;
 PERIOD/I2 = SMONTH;
END
TABLE FILE GGSALES
SUM UNITS
COMPUTE MOVAVE/D10.2 = ;
DOLLARS
 BY CATEGORY BY PERIOD
 WHERE SYEAR EQ 97 AND CATEGORY EQ 'Coffee'
 ON PERIOD RECAP MOVAVE/D10.1= FORECAST(DOLLARS,1,3,'MOVAVE',3);
END

The output is:
Category PERIOD Unit Sales MOVAVE Dollar Sales
-------- ------ ---------- ------ ------------
Coffee 1 61666 738,659.3 801123
 2 54870 734,447.5 682340
 3 61608 749,513.7 765078
 4 57050 712,897.3 691274
 5 59229 725,598.7 720444
 6 58466 718,058.3 742457
 7 60771 736,718.0 747253
 8 54633 715,202.0 655896
 9 57829 711,158.7 730327
 10 57012 703,545.0 724412
 11 51110 691,667.7 620264
 12 58981 702,334.7 762328
 13 0 694,975.6 0
 14 0 719,879.4 0
 15 0 705,729.9 0

Creating Temporary Fields

6-32 Information Builders

Example Distinguishing Data Rows From Predicted Rows
In the following example, the DATA_ROW virtual field has the value 1 for each row in
the data source. It has the value zero for the predicted rows. The PREDICT field is
calculated as YES for predicted rows and NO for rows containing data.
DEFINE FILE CAR
DATA_ROW/I1 = 1;
END
TABLE FILE CAR
 PRINT DATA_ROW
COMPUTE PREDICT/A3 = IF DATA_ROW EQ 1 THEN 'NO' ELSE 'YES' ;
MPG
BY DEALER_COST
WHERE MPG GE 20
 ON DEALER_COST RECAP FORMPG/D12.2=FORECAST(MPG,1000,3,'REGRESS');
 ON DEALER_COST RECAP MPG =FORECAST(MPG,1000,3,'REGRESS');
END

The output is:
DEALER_COST DATA_ROW PREDICT MPG FORMPG
----------- -------- ------- --- ------
 2,886 1 NO 27.00 25.65
 4,292 1 NO 25.00 23.91
 4,631 1 NO 21.00 23.49
 4,915 1 NO 21.00 23.14
 5,063 1 NO 23.00 22.95
 5,660 1 NO 21.00 22.21
 1 NO 21.00 22.21
 5,800 1 NO 24.20 22.04
 6,000 1 NO 24.20 21.79
 7,000 0 YES 20.56 20.56
 8,000 0 YES 19.32 19.32
 9,000 0 YES 18.08 18.08

Using Functions With Temporary Fields
Any function name encountered in a DEFINE or COMPUTE expression that is not
recognized as a supplied name is assumed to be a user-written function. These functions
are loaded dynamically when needed. They are coded by users and reside in a library that
is available at the time they are referenced.

 Creating Temporary Fields Unrelated to Master Files

Creating Reports 6-33

Creating Temporary Fields Unrelated to Master Files
The temporary fields you create with the DEFINE and COMPUTE commands are tied to
a specific Master File, and in the case of values calculated with the COMPUTE
command, to a specific request. However, you can create temporary fields that are
independent of either a Master File or a request using the DEFINE FUNCTION
command.

A DEFINE function is a named group of calculations that use any number of input values
and produce a return value.

A DEFINE function can be called in most of the same situations that are valid for
user-written subroutines. Data types (numeric or alphanumeric) referenced in the
arguments defined, and the arguments used must match. Shorter alphanumeric arguments
are padded with blanks while longer alphanumeric arguments are truncated.

All calculations within the function are done in double precision. Format conversions
occur only across equal signs in the assignments that define temporary fields.

Before calling a DEFINE function, you must issue the commands that define the
function.

Syntax How to Define a Function
DEFINE FUNCTION name (parameter1/format1,..., parametern/formatn)
[tempvariablea/formata = expressiona;]
 .
 .
 .
[tempvariablex/formatx = expressionx;]
name/format = [result_expression];
END

where:
name

Is the name of the function. This must be the last field calculated in the function and
is used to return the value of the function to the calling procedure.

format

 Is the format of the value the function returns.
parameter1/format1...parametern/formatn

Are the parameter names and their formats.

If a parameter is alphanumeric, the calling argument must be alphanumeric. Shorter
calling arguments are padded on the right with blanks, and longer arguments are
truncated.

If a parameter is numeric, the calling argument must also be numeric. To prevent
unexpected results, you must be consistent in your use of data types.

tempvariablea/formata...tempvariablex/formatx

Are temporary fields and their formats. Temporary fields hold intermediate values
used in the function. You can define as many temporary fields as you need.

Creating Temporary Fields

6-34 Information Builders

expressiona...expressionx

Are the expressions that calculate the temporary field values. The expressions can
use parameters, constants, and other temporary fields defined in the same function.

result_expression

Is the expression that calculates the value returned by the function. The expression
can use parameters, constants, and temporary fields defined in the same function.

All names defined in the body of the function are local to the function. The last field
defined before the END command in the function definition must have the same name as
the function and represents the return value for the function.

Reference DEFINE Function Limits and Restrictions
• The number of functions you can define and use in a session is virtually unlimited.

• DEFINE functions are not cleared by issuing a JOIN, or any other FOCUS
command, with the exception of DEFINE FUNCTION CLEAR.

• When an expression tries to use a cleared function, an error displays.

• Function names are limited to eight characters. There is no limit to the number of
parameters.

• Parameter names are limited to twelve characters.

• DEFINE functions can use other DEFINE functions but cannot be used recursively.

• If you overwrite or clear a DEFINE function, a subsequent attempt to use a
temporary field that refers to the function generates the following warning:
(FOC1956) DEFINE FUNCTION %1 used after CLEAR or DEFINE.

• You cannot call DEFINE functions from Dialogue Manager commands.

 Creating Temporary Fields Unrelated to Master Files

Creating Reports 6-35

Example Defining a Function
DEFINE FUNCTION SUBTRACT (VAL1/D8, VAL2/D8)
SUBTRACT/D8.2 = VAL1 - VAL2;
END

TABLE FILE MOVIES
PRINT TITLE LISTPR IN 35 WHOLESALEPR AND COMPUTE
PROFIT/D8.2 = SUBTRACT(LISTPR,WHOLESALEPR);
BY CATEGORY
 WHERE CATEGORY EQ 'MYSTERY' OR 'ACTION'
END

SUBTRACT is the name of the function. It uses local parameters VAL1 and VAL2. The
output is:
CATEGORY TITLE LISTPR WHOLESALEPR PROFIT
-------- ----- ------ ----------- ------
ACTION JAWS 19.95 10.99 8.96
 ROBOCOP 19.98 11.50 8.48
 TOTAL RECALL 19.99 11.99 8.00
 TOP GUN 14.95 9.99 4.96
 RAMBO III 19.95 10.99 8.96
MYSTERY REAR WINDOW 19.98 9.00 10.98
 VERTIGO 19.98 9.00 10.98
 FATAL ATTRACTION 29.98 15.99 13.99
 NORTH BY NORTHWEST 19.98 9.00 10.98
 DEAD RINGERS 25.99 15.99 10.00
 MORNING AFTER, THE 19.95 9.99 9.96
 PSYCHO 19.98 9.00 10.98
 BIRDS, THE 19.98 9.00 10.98
 SEA OF LOVE 59.99 30.00 29.99

Syntax How to Query DEFINE Functions
You can display a list of all defined functions and their parameters by issuing the
command:
? FUNCTION

A screen similar to the following displays:
FUNCTIONS CURRENTLY ACTIVE

Name Format Parameter Format
-------- -------- ------------ --------
SUBTRACT D8.2 VAL1 D8
 VAL2 D8

If you issue the ? FUNCTION command with no functions defined, the following
displays:
NO FUNCTIONS CURRENTLY IN EFFECT

Creating Temporary Fields

6-36 Information Builders

Syntax How to Clear DEFINE Functions
You can clear functions by issuing the command
DEFINE FUNCTION {name|*} CLEAR

where:
name

Is the function name to clear.
*

Clears all active functions.

Creating Reports 7-1

CHAPTER 7

Including Totals and Subtotals

Topics:

• Calculating Row and Column Totals

• Adding Section Totals and a Grand
Total

• Including Subtotals

• Recalculating Values for Subtotal
Rows

• Performing Calculations at Sort Field
Breaks

• Suppressing Grand Totals

• Conditionally Displaying Summary
Lines and Text

To help interpret detailed information in a report, you can
summarize numeric information using row and column totals,
grand totals, and subtotals. You can use these summary lines to
clarify or highlight information in a report.

Including Totals and Subtotals

7-2 Information Builders

Calculating Row and Column Totals
To produce totals for rows or columns of numbers in a report, you can use the
ROW-TOTAL and COLUMN-TOTAL phrases:

• ROW-TOTAL displays a new column containing the sum of all numbers in each
row.

• COLUMN-TOTAL displays a final row on the report, which contains the totals for
each column of numbers.

You can also use row totals and column totals in matrix reports (created by using a BY
and an ACROSS in your report request), rename row and column total titles, and include
calculated values in your row or column totals.

You can also create column totals using ACROSS-TOTAL. For details, see Chapter 4,
Sorting Tabular Reports.

Syntax How to Calculate Row and Column Totals
display_command fieldname AND ROW-TOTAL [alignment] [/format] [AS 'name']
display_command fieldname AND COLUMN-TOTAL [alignment] [AS 'name']

where:

display_command

Is one of the following commands: PRINT, LIST, SUM, or COUNT.

fieldname

Is the name of the field for which to calculate row and/or column totals.

alignment

Specifies the alignment of the ROW-TOTAL or COLUMN-TOTAL label. Possible
values are:

/R right justifies the label.

/L left justifies the label.

/C centers the label.

Note that these alignment settings are ignored in HTML output. If you are working
in WebFOCUS or in the Web Interface to FOCUS, to take advantage of column
alignment features, you can include the command SET STYLE=OFF in the report
request or generate your output in PDF, or in another format that supports these
features. For details, see Chapter 11, Saving and Reusing Report Output.

format

Reformats the ROW-TOTAL.

name

Is the label for the ROW-TOTAL or COLUMN-TOTAL.

 Calculating Row and Column Totals

Creating Reports 7-3

You may also specify row or column totals with the ON TABLE command. Field names
are optional with COLUMN-TOTAL and cannot be listed with ROW-TOTAL. Use the
following syntax:

ON TABLE COLUMN-TOTAL [alignment] [AS 'name'] [fieldname fieldname
fieldname]
ON TABLE ROW-TOTAL [alignment] [/format] [AS 'name']

Reference Usage Notes for Row and Column Totals
• If one field is summed, the format of the row total is the same as the format of the

field. For instance, if the format of CURR_SAL is D12.2M, the format of the row
total for CURR_SAL is also D12.2M.

• When you are summing fields with different formats, a default format of D12.2 is
used for the total.

Example Calculating Row and Column Totals
The following request illustrates the use of ROW-TOTAL and COLUMN-TOTAL:

TABLE FILE SALES
SUM RETURNS DAMAGED AND ROW-TOTAL AND COLUMN-TOTAL
BY PROD_CODE
END

The output is:

PROD_CODE RETURNS DAMAGED TOTAL
--------- ------- ------- ---------
B10 13 10 23
B12 4 3 7
B17 4 2 6
B20 1 2 3
C13 3 0 3
C17 0 0 0
C7 5 4 9
D12 3 2 5
E1 4 7 11
E2 9 4 13
E3 12 11 23

TOTAL 58 45 103

Including Totals and Subtotals

7-4 Information Builders

Example Specifying Column Totals With ON TABLE
The following request illustrates the use of COLUMN-TOTAL with the ON TABLE
command:

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME
ON TABLE COLUMN-TOTAL
END

The output is:
LAST_NAME CURR_SAL
--------- --------
BANNING $29,700.00
BLACKWOOD $21,780.00
CROSS $27,062.00
GREENSPAN $9,000.00
IRVING $26,862.00
JONES $18,480.00
MCCOY $18,480.00
MCKNIGHT $16,100.00
ROMANS $21,120.00
SMITH $13,200.00
 $9,500.00
STEVENS $11,000.00

TOTAL $222,284.00

Example Using Row and Column Totals in a Matrix Report
The following request illustrates the use of ROW-TOTAL and COLUMN-TOTAL in a
matrix report (created by using the BY and ACROSS phrases together).

TABLE FILE EMPLOYEE
SUM CURR_SAL AND ROW-TOTAL AND COLUMN-TOTAL
BY BANK_NAME
ACROSS DEPARTMENT
END

The output is:

 Calculating Row and Column Totals

Creating Reports 7-5

Example Renaming Row and Column Totals in Sorted Reports (BY)
The following request illustrates how to rename the ROW-TOTAL and
COLUMN-TOTAL labels in a report that is sorted vertically:

TABLE FILE CAR
SUM DCOST RCOST ROW-TOTAL/C/D12 AS 'TOTAL_COST'
BY COUNTRY
ON TABLE COLUMN-TOTAL/C AS 'FINAL_TOTAL'
END

The output is:

COUNTRY DEALER_COST RETAIL_COST TOTAL_COST
------- ----------- ----------- ---------------
ENGLAND 37,853 45,319 83,172
FRANCE 4,631 5,610 10,241
ITALY 41,235 51,065 92,300
JAPAN 5,512 6,478 11,990
W GERMANY 54,563 64,732 119,295

 FINAL_TOTAL 143,794 173,204 316,998

Example Renaming Row and Column Totals in Sorted Reports (ACROSS)
This request renames the ROW-TOTAL and COLUMN-TOTAL in a report that is sorted
horizontally.

TABLE FILE EMPLOYEE
SUM CURR_SAL
AND ROW-TOTAL AS 'TOTAL_SALARY'
ACROSS DEPARTMENT
BY CURR_JOBCODE
ON TABLE COLUMN-TOTAL AS 'FINAL_TOTAL'
END

The output is:
 DEPARTMENT
 MIS PRODUCTION TOTAL_SALARY
CURR_JOBCODE

A01 . $9,500.00 $9,500.00
A07 $9,000.00 $11,000.00 $20,000.00
A15 . $26,862.00 $26,862.00
A17 $27,062.00 $29,700.00 $56,762.00
B02 $18,480.00 $16,100.00 $34,580.00
B03 $18,480.00 . $18,480.00
B04 $21,780.00 $21,120.00 $42,900.00
B14 $13,200.00 . $13,200.00

FINAL_TOTAL $108,002.00 $114,282.00 $222,284.00

Including Totals and Subtotals

7-6 Information Builders

Example Including Calculated Values in Row and Column Totals
The following request illustrates the inclusion of the calculated value, PROFIT, in row
and column totals.

TABLE FILE CAR
SUM DCOST RCOST
COMPUTE PROFIT/D12=RCOST-DCOST;
ROW-TOTAL/L/D12 AS 'TOTAL_COST'
BY COUNTRY
ON TABLE COLUMN-TOTAL/L AS 'FINAL_TOTAL'
END

The output is:

COUNTRY DEALER_COST RETAIL_COST PROFIT TOTAL_COST
------- ----------- ----------- ------ ---------------
ENGLAND 37,853 45,319 7,466 90,638
FRANCE 4,631 5,610 979 11,220
ITALY 41,235 51,065 9,830 102,130
JAPAN 5,512 6,478 966 12,956
W GERMANY 54,563 64,732 10,169 129,464

FINAL_TOTAL 143,794 173,204 29,410 346,408

Adding Section Totals and a Grand Total
Frequently, reports contain detailed information that is broken down into subsections for
which simple column and row totals may not provide adequate summaries. In these
instances, it is more useful to look at subtotals for particular sections and a grand total at
the end of the report.

You can add the following commands to your requests to create section subtotals and
grand totals:

• SUB-TOTAL and SUBTOTAL

• SUMMARIZE and RECOMPUTE (used with calculated values)

• RECAP and COMPUTE

Each command produces grand totals and/or subtotals by using different numeric
information. Subtotals produce totals every time a specified sort field value changes and
are independent of record selection criteria. You can further control when subtotals are
produced by specifying WHEN criteria (see Conditionally Displaying Summary Lines
and Text on page 7-21). You can also suppress grand totals using the NOTOTAL
command. For details, see Suppressing Grand Totals on page 7-19.

 Adding Section Totals and a Grand Total

Creating Reports 7-7

Example Using Section Totals and Grand Totals
The following request illustrates how to create a subtotal every time the department value
changes and a grand total for the entire report:

TABLE FILE EMPLOYEE
SUM DED_AMT BY DED_CODE BY DEPARTMENT
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON DEPARTMENT SUBTOTAL
END

The first and last portions of the output are:

Including Totals and Subtotals

7-8 Information Builders

Including Subtotals
You can use the SUBTOTAL and SUB-TOTAL commands to sum individual values,
such as columns of numbers, each time a named sort field changes value.

• SUB-TOTAL displays a subtotal for all numeric values when the BY/ON field
changes value and for any higher-level sort fields when their values change.

• SUBTOTAL displays a subtotal only when the specified sort field changes value. It
does not give subtotals for higher-level fields.

Both SUB-TOTAL and SUBTOTAL produce grand totals. You can suppress grand totals
using the NOTOTAL command. See Suppressing Grand Totals on page 7-19.

The subtotal is calculated every time the BY field value changes or, if WHEN criteria are
applied to the BY field, every time the WHEN conditions are met.

A BY or ON phrase is required to initialize the syntax.

Syntax How to Create Subtotals
{BY|ON} fieldname {SUB-TOTAL|SUBTOTAL} [MULTILINES] [AS 'text']
 [field1 [AND] field2...] [WHEN expression;]

where:

fieldname

Must be the name of a field in a BY phrase. The number of fields to subtotal
multiplied by the number of levels of subtotals counts in the number of display fields
permitted for the request. For details on determining the maximum number of
display fields that can be used in a request, see Chapter 1, Creating Tabular Reports.

SUB-TOTAL/SUBTOTAL

SUB-TOTAL displays subtotals for numeric values when the BY/ON field changes
value and for any higher-level sort fields when their values change.

SUBTOTAL displays a subtotal only when the specified sort field changes value.

MULTILINES

Suppresses the printing of a subtotal line for every sort break that has only one detail
line, since the subtotal value is equal to this one value. Note that MULTI-LINES is a
synonym for MULTILINES.

AS 'text'

Enables you to specify a different label. For related information, see Chapter 9,
Customizing Tabular Reports.

 Including Subtotals

Creating Reports 7-9

field1, field2, ...

Denotes a list of specific fields to subtotal. This list overrides the default, which
includes all numeric display fields.

WHEN expression

Specifies the conditional display of subtotals as determined by a Boolean expression
(see Conditionally Displaying Summary Lines and Text on page 7-21). You must end
the expression with a semicolon.

Reference Usage Notes for Subtotals
• Use only one of the following in a request: SUB-TOTAL, SUBTOTAL,

RECOMPUTE, or SUMMARIZE.

• When using a SUM or COUNT command with only one BY phrase in the request,
SUB-TOTAL and SUBTOTAL produce the same result as the value of the SUM or
COUNT command. However, when using a PRINT command with one BY phrase,
SUBTOTAL is useful because there can be many values within a sort break.

• All subtotals are displayed up to and including the point where the sort break occurs,
so that only the innermost point of subtotaling should be requested. For instance, if
the BY fields are

BY AREA
BY PROD_CODE
BY DATE SUB-TOTAL

then, when AREA changes, subtotals are displayed for DATE, PROD_CODE, and
AREA on three lines (one under the other).

• To suppress grand totals produced by SUB-TOTAL and SUBTOTAL, use the
NOTOTAL option (see Suppressing Grand Totals on page 7-19).

• SUBTOTAL and SUB-TOTAL should not be used with prefix operators.

Including Totals and Subtotals

7-10 Information Builders

Example Generating Subtotals
The following request illustrates how to create a subtotal for SALES every time the
country value changes.

TABLE FILE CAR
SUM AVE.MPG AND SALES AND AVE.RETAIL_COST
BY COUNTRY SUB-TOTAL SALES
BY BODYTYPE
END

The output is:

 AVE AVE
COUNTRY BODYTYPE MPG SALES RETAIL_COST
------- -------- ---- ----- -----------
ENGLAND CONVERTIBLE 16 0 8,878
 HARDTOP 25 0 5,100
 SEDAN 10 12000 15,671

*TOTAL ENGLAND 12000

FRANCE SEDAN 21 0 5,610

*TOTAL FRANCE 0

ITALY COUPE 11 12400 19,160
 ROADSTER 21 13000 6,820
 SEDAN 21 4800 5,925
*TOTAL ITALY 30200

JAPAN SEDAN 14 78030 3,239

*TOTAL JAPAN 78030

W GERMANY SEDAN 20 88190 9,247

*TOTAL W GERMANY 88190

FINAL_TOTAL 208420

 Including Subtotals

Creating Reports 7-11

Example Comparing SUB-TOTAL and SUBTOTAL
The following request illustrates how to create a subtotal for the numeric fields
DED_AMT and GROSS when the department value changes, and for the higher-level
sort field (DED_CODE) when its value changes:

TABLE FILE EMPLOYEE
SUM DED_AMT GROSS BY DED_CODE BY DEPARTMENT
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON DEPARTMENT SUB-TOTAL
END

If you use SUBTOTAL instead of SUB-TOTAL, totals for DED_AMT and GROSS
display only when the DEPARTMENT value changes.

The first and last portions of output are:

Including Totals and Subtotals

7-12 Information Builders

Recalculating Values for Subtotal Rows
You can use the SUMMARIZE and RECOMPUTE commands instead of SUB-TOTAL
and SUBTOTAL to recalculate the result of a COMPUTE command.

SUMMARIZE is similar to SUB-TOTAL in that it recomputes values at every sort break.
RECOMPUTE is similar to SUBTOTAL in that it recalculates only at the specified sort
break.

SUMMARIZE recomputes grand totals for the entire report. If you wish to suppress the
grand totals you can include the NOTOTAL command in your request. See Suppressing
Grand Totals on page 7-19.

A BY or ON phrase is required to initialize the syntax.

Syntax How to Subtotal Calculated Values
{BY|ON} fieldname {SUMMARIZE|RECOMPUTE} [MULTILINES] [AS 'text']
 [field1 [AND] field2...] [WHEN expression;]

where:

fieldname

Must be the name of a field in a BY phrase. The number of fields to subtotal
multiplied by the number of levels of subtotals counts in the number of display fields
permitted for the request. For details on determining the maximum number of
display fields that can be used in a request, see Chapter 1, Creating Tabular Reports.

SUMMARIZE|RECOMPUTE

SUMMARIZE recomputes values at every sort break.

RECOMPUTE recalculates values only at the specified sort break.

MULTILINES

Suppresses the printing of a subtotal line for every sort break that has only one detail
line, since the subtotal value is equal to this one value. Note that MULTI-LINES is a
synonym for MULTILINES.

You can also suppress grand totals using the NOTOTAL command, as described in
Suppressing Grand Totals on page 7-19.

AS 'text'

Enables you to specify a different label. For related information, see Chapter 9,
Customizing Tabular Reports.

 Recalculating Values for Subtotal Rows

Creating Reports 7-13

field1, field2, ...

Denotes a list of specific fields to be subtotaled after the RECOMPUTE or
SUMMARIZE. This list overrides the default, which includes all numeric display
fields.

WHEN expression

Specifies the conditional display of subtotals based on a Boolean expression (see
Conditionally Displaying Summary Lines and Text on page 7-21). You must end the
expression with a semicolon.

You may also generate subtotals for the recalculated values with the ON TABLE
command. Use the following syntax:

ON TABLE SUMMARIZE

Reference Usage Notes for SUMMARIZE and RECOMPUTE
• Like SUBTOTAL and SUB-TOTAL, SUMMARIZE and RECOMPUTE should not

be used with prefix operators.

• You can specify WHEN criteria with SUMMARIZE or RECOMPUTE to
conditionally display subtotals for calculated values.

• Use only one of the following in a request: SUB-TOTAL, SUBTOTAL,
SUMMARIZE, or RECOMPUTE.

Including Totals and Subtotals

7-14 Information Builders

Example Using SUMMARIZE
The following request illustrates the use of SUMMARIZE to recalculate DG_RATIO at
the specified sort break, DEPARTMENT, and for the higher-level sort break,
PAY_DATE:

TABLE FILE EMPLOYEE
SUM GROSS DED_AMT AND COMPUTE
DG_RATIO/F4.2=DED_AMT/GROSS;
BY HIGHEST PAY_DATE BY DEPARTMENT
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON DEPARTMENT SUMMARIZE
END

The first and last portions of the output are:

Tip:

If you used SUB-TOTAL or SUBTOTAL rather than SUMMARIZE, the values of
DG_RATIO would be added.

 Recalculating Values for Subtotal Rows

Creating Reports 7-15

Example Using RECOMPUTE
The following request illustrates the use of RECOMPUTE to recalculate DG_RATIO
only at the specified sort break, DEPARTMENT.

TABLE FILE EMPLOYEE
SUM GROSS DED_AMT AND COMPUTE
DG_RATIO/F4.2=DED_AMT/GROSS;
BY HIGHEST PAY_DATE BY DEPARTMENT
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON DEPARTMENT RECOMPUTE
END

The output is:

Including Totals and Subtotals

7-16 Information Builders

Performing Calculations at Sort Field Breaks
You can use the RECAP and COMPUTE commands to create subtotal values in a
calculation. The subtotal values are not displayed; only the result of the calculation is
shown on the report.

A BY or ON phrase is required to initialize the syntax.

Syntax How to Use Subtotals in Calculations
Both the RECAP and COMPUTE commands have similar syntax to other total and
subtotal commands.

{BY|ON} fieldname1 {RECAP|COMPUTE} fieldname2[/format] = expression;
 [WHEN expression;]

where:

fieldname1

Is the field in the BY phrase. Each time the BY field changes value, a new recap
value is calculated.

fieldname2

Is the field name that contains the result of the expression.

/format

Can be any valid format. The default is D12.2.

expression

Can be any valid expression, described in Chapter 8, Using Expressions. You must
end the expression with a semicolon.

WHEN expression

Is for use with RECAP only. Specifies the conditional display of RECAP lines as
determined by a Boolean expression (see Conditionally Displaying Summary Lines
and Text on page 7-21). You must end the expression with a semicolon.

 Performing Calculations at Sort Field Breaks

Creating Reports 7-17

Reference Usage Notes for RECAP and COMPUTE
• RECAP uses the current value of the named sort field, the current subtotal values of

any computational fields that appear as display fields, or the last value for
alphanumeric fields.

• The field names in the expression must be fields that appear on the report. That is,
they must be display fields or sort control fields.

• Each RECAP value displays on a separate line. However, if the request contains a
RECAP command and SUBFOOT text, the RECAP value displays only in the
SUBFOOT text and must be specified in the text using a spot marker. (For details,
see Chapter 9, Customizing Tabular Reports.)

• The calculations in a RECAP or COMPUTE can appear anywhere under the control
break along with any text. (For details, see Chapter 9, Customizing Tabular Reports.)

• The word RECAP may not be specified more than seven times. However, more than
seven RECAP calculations are permitted. Use the following syntax:

ON fieldname RECAP field1/format= ... ;
field2/format= ... ;
.
.
.

Including Totals and Subtotals

7-18 Information Builders

Example Using RECAP
The following request illustrates the use of RECAP (DEPT_NET) to determine net
earnings for each department:

TABLE FILE EMPLOYEE
SUM DED_AMT AND GROSS
BY DEPARTMENT BY PAY_DATE
ON DEPARTMENT RECAP DEPT_NET/D8.2M = GROSS-DED_AMT;
WHEN PAY_DATE GT 820101
END

The output is:

 Suppressing Grand Totals

Creating Reports 7-19

Example Using Multiple RECAP Commands
You can include multiple RECAP or COMPUTE commands in a request. This option
enables you to perform different calculations at different control breaks.

The following request illustrates the use of multiple RECAP commands:

TABLE FILE SALES
SUM UNIT_SOLD AND RETURNS
WHERE AREA EQ 'U'
BY DATE BY AREA BY PROD_CODE
ON DATE RECAP
DATE_RATIO=RETURNS/UNIT_SOLD;
ON AREA UNDER-LINE RECAP
AREA_RATIO=RETURNS/UNIT_SOLD;
END

The first page of output is:
DATE AREA PROD_CODE UNIT_SOLD RETURNS
---- ---- --------- --------- -------
10/17 U B10 30 2
 B17 20 2
 B20 15 0
 C17 12 0
 D12 20 3
 E1 30 4
 E3 35 4

** AREA_RATIO .09

** DATE_RATIO .09
--
10/18 U B10 13 1

** AREA_RATIO .08

** DATE_RATIO .08
--
10/19 U B12 29 1

** AREA_RATIO .03

** DATE_RATIO .03
--

Suppressing Grand Totals
You can use the NOTOTAL command to suppress grand totals on a report.

Suppressing the grand total is useful when there is only one value at a sort break, since
the grand total value is equal to that one value. Using the NOTOTAL command prevents
the report from displaying a grand total line for every sort break that has only one detail
line. You can also suppress subtotals using the MULTILINES command. For details, see
How to Create Subtotals on page 7-8.

Including Totals and Subtotals

7-20 Information Builders

Syntax How to Suppress Grand Totals
To suppress grand totals, add the following syntax to your request:

ON TABLE NOTOTAL

Example Suppressing Grand Totals
The following request includes the NOTOTAL phrase to suppress grand totals for
CURR_SAL, GROSS, and DED_AMT.

TABLE FILE EMPLOYEE
SUM CURR_SAL AND GROSS AND DED_AMT
BY EMP_ID
BY BANK_ACCT
WHERE BANK_ACCT NE 0
ON BANK_ACCT SUB-TOTAL
ON TABLE NOTOTAL
END

The output is:

 Conditionally Displaying Summary Lines and Text

Creating Reports 7-21

Conditionally Displaying Summary Lines and Text
In addition to using summary lines to control the look and content of your report, you
can specify WHEN criteria to control the conditions under which summary lines appear
for each vertical (BY) sort field value. WHEN is supported with SUBTOTAL,
SUB-TOTAL, SUMMARIZE, RECOMPUTE, and RECAP. For details on the WHEN
phrase, see Chapter 9, Customizing Tabular Reports.

Example Conditionally Displaying Summary Lines and Text
In a sales report that covers four regions (Midwest, Northeast, Southeast, and West), you
may want to only display a subtotal when total dollar sales are greater than 11500000.
The following request accomplishes this by including criteria to trigger the display of a
subtotal and subfooting text only when dollar sales exceed 11500000.

TABLE FILE GGSALES
SUM UNITS DOLLARS
BY REGION
BY CATEGORY
ON REGION SUBTOTAL
WHEN DOLLARS GT 11500000
SUBFOOT
"The total for the <REGION region is less than 11500000."
WHEN DOLLARS LT 11500000
END

The output is:
 Region Category Unit Sales Dollar Sales
 ------ -------- ---------- ------------
 Midwest Coffee 332777 4178513
 Food 341414 4338271
 Gifts 230854 2883881
 The total for the Midwest region is less than 11500000.
 Northeast Coffee 335778 4164017
 Food 353368 4380004
 Gifts 227529 2848289
 The total for the Northeast region is less than 11500000.
 Southeast Coffee 350948 4415408
 Food 349829 4308731
 Gifts 234455 2986240

 *TOTAL Southeast 935232 11710379

 West Coffee 356763 4473527
 Food 340234 4202338
 Gifts 235042 2977092

*TOTAL West 932039 11652957

FINAL_TOTAL 3688991 46156311

Creating Reports 8-1

CHAPTER 8

Using Expressions

Topics:
• Using Expressions in Commands and

Phrases

• Types of Expressions

• Creating a Numeric Expression

• Creating a Date or Date-Time
Expression

• Creating a Character Expression

• Creating a Logical Expression

• Creating a Conditional Expression

An expression combines field names, constants, and operators in
a calculation that returns a single value. You can use an
expression in a variety of commands to assign a value to a
temporary field or Dialogue Manager amper variable, or use it
in screening. You can build increasingly complex expressions
by combining simpler ones.

When you write an expression, you can specify the operation
yourself, or you can use one of the many supplied functions that
perform specific calculations or data manipulation. These
functions operate on one or more arguments and return a single
value as a result. To use a function, you simply call it. For
details about functions, see the Using Functions manual.

Using Expressions

8-2 Information Builders

Using Expressions in Commands and Phrases
You can use an expression in various commands and phrases. An expression may not
exceed 40 lines and must end with a semicolon, except in WHERE and WHEN phrases,
in which the semicolon is optional.

The commands that support expressions, and their basic syntax, are summarized here. For
complete syntax with an explanation see the applicable documentation.

You can use an expression when you:

• Create a temporary field, and assign a value to that field. The field can be created in
a Master File using the DEFINE attribute, or created using a DEFINE or COMPUTE
command:

• DEFINE command preceding a report request:
DEFINE FILE filename
 fieldname[/format] = expression;
 .
 .
 .
END

• DEFINE attribute in a Master File:
DEFINE fieldname[/format] = expression;$

• COMPUTE command in a report request:
COMPUTE fieldname[/format] = expression;

• Define record selection criteria and criteria that control report formatting.
{WHERE|IF} logical_expression[;]

WHEN logical_expression[;]

• Determine branching in Dialogue Manager or assign a value to a Dialogue Manager
amper variable.
-IF logical_expression [THEN] GOTO label1 [ELSE GOTO label2];

-SET &name = expression;

• Perform a calculation with the RECAP command in the Financial Modeling
Language (FML).
RECAP name [(n)] [/format] = expression;

 Types of Expressions

Creating Reports 8-3

Types of Expressions
An expression can be one of the following:

• Numeric. Use numeric expressions to perform calculations that use numeric
constants (integer or decimal) and fields. For example, you can write an expression
to compute the bonus for each employee by multiplying the current salary by the
desired percentage as follows:
COMPUTE BONUS/D12.2 = CURR_SAL * 0.05 ;

A numeric expression returns a numeric value. For details, see Creating a Numeric
Expression on page 8-4.

• Date. Use date expressions to perform numeric calculations on dates. For example,
you can write an expression to determine when a customer can expect to receive an
order by adding the number of days in transit to the date on which you shipped the
order as follows:
COMPUTE DELIVERY/MDY = SHIPDATE + 5 ;

There are two types of date expressions:

• Date expressions, which return a date, a component of a date, or an integer that
represents the number of days, months, quarters, or years between two dates. For
details, see Creating a Date or Date-Time Expression on page 8-7.

• Date-time expressions, which you can create using a variety of specialized
date-time functions, each of which returns a different kind of value. For details
about these functions, see the Developing Applications manual.

• Character. Use character expressions to manipulate alphanumeric constants or
fields. For example, you can write an expression to extract the first initial from an
alphanumeric field as follows:
COMPUTE FIRST_INIT/A1 = EDIT (FIRST_NAME, ‘9$$$$$$$$$’) ;

A character expression returns an alphanumeric value. For details, see Creating a
Character Expression on page 8-12.

• Logical. Use logical expressions to evaluate the relationship between two values. A
logical expression returns TRUE or FALSE. For details, see Creating a Logical
Expression on page 8-14.

• Conditional. Use conditional expressions to assign values based on the result of
logical expressions. A conditional expression (IF ... THEN ... ELSE) returns a
numeric or alphanumeric value. For details, see Creating a Conditional Expression
on page 8-16.

Expressions and Field Formats
When you use an expression to assign a value to a field, make sure that you give the field
a format that is consistent with the value returned by the expression. For example, if you
use a character expression to concatenate a first name and last name and assign it to the
field FULL_NAME, make sure you define the field as character (that is, alphanumeric or
text).

Using Expressions

8-4 Information Builders

Example Assigning a Field Format of Sufficient Length
The following example contains a character expression that concatenates the first name
and last name to derive the full name. It assigns the field FULL_NAME an alphanumeric
format of sufficient length to accommodate the concatenated name:
DEFINE FILE EMPLOYEE
FULL_NAME/A25 = FIRST_NAME | LAST_NAME;
END
TABLE FILE EMPLOYEE
PRINT FULL_NAME
WHERE LAST_NAME IS 'BLACKWOOD'
END

The output is:
FULL_NAME

ROSEMARIE BLACKWOOD

Creating a Numeric Expression
A numeric expression performs a calculation that uses numeric constants, fields,
operators, or functions to return a numeric value. When you use a numeric expression to
assign a value to a field, that field must have a numeric format. The default format is
D12.2.
A numeric expression can consist of the following components, shown below in bold:

• A numeric constant. For example:
COMPUTE COUNT/I2 = 1 ;

• A numeric field. For example:
COMPUTE RECOUNT/I2 = COUNT ;

• Two numeric constants or fields joined by an arithmetic operator. For example:
COMPUTE BONUS/D12.2 = CURR_SAL * 0.05 ;

For a list of arithmetic operators, see Arithmetic Operators on page 8-5.

• A numeric function. For example:
COMPUTE LONGEST_SIDE/D12.2 = MAX (WIDTH, HEIGHT) ;

• Two or more numeric expressions joined by an arithmetic operator. For example:
COMPUTE PROFIT/D12.2 = (RETAIL_PRICE - UNIT_COST) * UNIT_SOLD ;

Note the use of parentheses to change the order of evaluation of the expression. For
information on the order in which numeric operations are performed, see Order of
Evaluation on page 8-5.

Before they are used in calculations, all numeric values are converted to double-precision
floating-point format. The result is then converted to the specified field format. In some
cases the conversion may result in a rounding difference.
If a number is too large (greater than 10^75) or too small (less than 10^-75), you receive
an Overflow or Underflow warning, and asterisks display for the field value.
For detailed information on rounding behavior for numeric data formats, see the
Describing Data manual.

 Creating a Numeric Expression

Creating Reports 8-5

Reference Arithmetic Operators
The following list shows the arithmetic operators you can use in an expression:

Addition +

Subtraction -

Multiplication *

Division /

Exponentiation **

Note: If you attempt to divide by 0, the value of the expression is 0. Multiplication and
exponentiation are not supported for date expressions of any type. To isolate part of a
date, use a simple assignment command.

For related information, see Order of Evaluation on page 8-5.

Order of Evaluation
Numeric expressions are evaluated in the following order:

1. Exponentiation.

2. Division and multiplication.

3. Addition and subtraction.

When operators are at the same level, they are evaluated from left to right. Because
expressions in parentheses are evaluated before any other expression, you can use
parentheses to change this predefined order. For example, the following expressions yield
different results because of parentheses:
COMPUTE PROFIT/D12.2 = RETAIL_PRICE - UNIT_COST * UNIT_SOLD ;
COMPUTE PROFIT/D12.2 = (RETAIL_PRICE - UNIT_COST) * UNIT_SOLD ;

In the first expression, UNIT_SOLD is first multiplied by UNIT_COST, and the result is
subtracted from RETAIL_PRICE. In the second expression, UNIT_COST is first
subtracted from RETAIL_PRICE, and that result is multiplied by UNIT_SOLD.

Note: Two operators cannot appear consecutively. The following expression is invalid:
a * -1

To make it valid, you must add parentheses:
a* (-1)

Using Expressions

8-6 Information Builders

Example Controlling the Order of Evaluation
The order of evaluation can affect the result of an expression. Suppose you want to
determine the dollar loss in retail sales attributed to the return of damaged items. You
could issue the following request:
TABLE FILE SALES
PRINT RETAIL_PRICE RETURNS DAMAGED
COMPUTE RETAIL_LOSS/D12.2 = RETAIL_PRICE * RETURNS + DAMAGED;
BY PROD_CODE
WHERE PROD_CODE IS ‘E1’;
END

The calculation
COMPUTE RETAIL_LOSS/D12.2 = RETAIL_PRICE * RETURNS + DAMAGED;

gives an incorrect result because RETAIL_PRICE is first multiplied by RETURNS, and
then the result is added to DAMAGED. The correct result is achieved by adding
RETURNS to DAMAGED, then multiplying the result by RETAIL_PRICE.

You can change the order of evaluation by enclosing expressions in parentheses. An
expression in parentheses is evaluated before any other expression. You may also use
parentheses to improve readability.

Using parentheses, the correct syntax for the preceding calculation is:
COMPUTE RETAIL_LOSS/D12.2 = RETAIL_PRICE * (RETURNS + DAMAGED);

The output is:
PROD_CODE RETAIL_PRICE RETURNS DAMAGED RETAIL_LOSS
--------- ------------ ------- ------- -----------
E1 $.89 4 7 10.56

 Creating a Date or Date-Time Expression

Creating Reports 8-7

Creating a Date or Date-Time Expression
A date or date-time expression performs a numeric calculation that involves dates.

A date expression returns a date, a date component, or an integer that represents the
number of days, months, quarters, or years between two dates. You can write a date
expression directly that consists of:

• A date constant. For example:
COMPUTE END_DATE/MDYY = 'FEB 29 2000';

Single quotation marks around the date constant are required.

• A date field. For example:
COMPUTE NEWDATE/YMD = START_DATE;

• An alphanumeric, integer, or packed decimal format field, with date edit options. For
example, in the second COMPUTE command, OLDDATE is a date expression:
COMPUTE OLDDATE/I6YMD = 980307;
COMPUTE NEWDATE/YMD DFC 19 YRT 10 = OLDDATE;

• A calculation that uses an arithmetic operator or date function to return a date. Use a
numeric operator only with date formats (formerly called Smart dates). The
following example first converts the integer date HIRE_DATE (format I6YMD) to
the date format CONVERTED_HDT (format YMD). It then adds 30 days to
CONVERTED_HDT:
COMPUTE CONVERTED_HDT/YMD = HIRE_DATE;
HIRE_DATE_PLUS_THIRTY/YMD = CONVERTED_HDT + 30;

• A calculation that uses a numeric operator or date function to return an integer that
represents the number of days, months, quarters, or years between two dates. The
following example uses the date function YMD to calculate the difference (number
of days) between an employee’s hire date and the date of his first salary increase:
COMPUTE DIFF/I4 = YMD (HIRE_DATE,FST.DAT_INC);

A date-time expression returns date and time components. You can create these
expressions using a variety of supplied date-time functions. For details, see the Using
Functions manual.

Using Expressions

8-8 Information Builders

Formats for Date Values
You can work with dates in one of two ways:

• In date format. The value is treated as an integer that represents the number of days
between the date value and a base date. There are two base dates for date formats:
YMD and YYMD formats have a base date of December 31, 1900; and YM and
YYM formats have a base date of January, 1901. When displayed, the integer value
is converted to the corresponding date in the format specified for the field. The
format can be specified in either the Master File or in the command that uses an
expression to assign a value to the field. These were previously referred to as smart
date formatted fields.

• In integer, packed decimal, or alphanumeric format with date edit options. The
value is treated as an integer, a packed decimal, or an alphanumeric string. When
displayed, the value is formatted as a date. These were previously referred to as old
date formatted fields.

You can convert a date in one format to a date in another format simply by assigning one
to the other. For example, the following assignments take a date stored as an
alphanumeric field, formatted with date edit options, and convert it to a date stored as a
temporary date field:
COMPUTE ALPHADATE/A6MDY = '120599' ;

 REALDATE/MDY = ALPHADATE;

Reference Base Dates for Date Formats
The following table shows the base date for each supported date format:

Format Base Date

YMD and YYMD 1900/12/31

YM and YYM 1901/01

YQ and YYQ 1901 Q1

JUL and YYJUL 1900/365

Note that the base date used for the functions DA and DT is December 31, 1899. For
details on date functions, see the Using Functions manual.

 Creating a Date or Date-Time Expression

Creating Reports 8-9

Reference Impact of Date Formats on Storage and Display
The following table illustrates how the field format affects storage and display:

Date Format
(For example: MDYY)

Integer, Packed, Decimal,
or Alphanumeric Format
(For example: A8MDYY)

Value Stored Displayed Stored Displayed

February 28, 1999 35853 02/28/1999 02281999 02/28/1999

March 1, 1999 35854 03/01/1999 03011999 03/01/1999

Performing Calculations on Dates
The format of a field determines how you can use it in a date expression. Calculations on
dates in date format can incorporate numeric operators as well as numeric functions.
Calculations on dates in integer, packed, decimal, or alphanumeric format require the use
of date functions; numeric operators return an error message or incorrect result.

A full set of functions is supplied with your software, enabling you to manipulate dates in
integer, packed decimal, and alphanumeric format. For details on date functions, see the
Using Functions manual.

Example Calculating Dates
Assume that your company maintains a SHIPPING database. The following example
calculates how many days it takes the shipping department to fill an order by subtracting
the date on which an item is ordered, the ORDER_DATE, from the date on which it is
shipped, SHIPDATE:
COMPUTE TURNAROUND/I4 = SHIP_DATE - ORDER_DATE;

An item ordered on February 28, 1999, and shipped on March 1, 1999, results in a
difference of one day. However, if the SHIP_DATE and ORDER_DATE fields have an
integer format, the result of the calculation (730000) is incorrect, since you cannot use the
numeric operator minus (-) with that format.

The following table shows how the field format affects the result:

 Value in Date
Format

Value in Integer
Format

SHIP_DATE = March 1, 1999 35854 03011999

ORDER_DATE = February 28, 1999 35853 02281999

TURNAROUND 1 730000

To obtain the correct result using fields in integer, packed, decimal, or alphanumeric
format, use the date function MDY, which returns the difference between two dates in the
form month-day-year. Using the function MDY, you can calculate TURNAROUND as
follows:
COMPUTE TURNAROUND/I4 = MDY(ORDER_DATE, SHIP_DATE);

Using Expressions

8-10 Information Builders

Cross-Century Dates With DEFINE and COMPUTE
You can use an expression in a DEFINE or COMPUTE command, or in a DEFINE
attribute in a Master File, that implements the sliding window technique for cross-century
date processing. The parameters DEFCENT and YRTHRESH provide a means of
interpreting the century if the first two digits of the year are not provided elsewhere. If
the first two digits are provided, they are simply accepted.

For details on the sliding window technique, and the use of expressions in this technique,
see the topic on cross-century dates in the Developing Applications manual.

Returned Field Format Selection
A date expression always returns a number. That number may represent a date or the
number of days, months, quarters, or years between two dates. When you use a date
expression to assign a value to a field, the format selected for the field determines how
the result is returned.

Example Selecting the Format of a Returned Field
Consider the following commands, assuming that SHIP_DATE and ORDER_DATE are
date-formatted fields. The first command calculates how many days it takes a shipping
department to fill an order by subtracting the date on which an item is ordered,
ORDER_DATE, from the date on which it is shipped, SHIP_DATE. The second
command calculates a delivery date by adding five days to the date on which the order is
shipped.
COMPUTE TURNAROUND/I4 = SHIP_DATE - ORDER_DATE;
COMPUTE DELIVERY/MDY = SHIP_DATE + 5;

In the first command, the date expression returns the number of days it takes to fill an
order; therefore, the associated field, TURNAROUND, must have an integer format. In
the second command, the date expression returns the date on which the item will be
delivered; therefore, the associated field, DELIVERY, must have a date format.

Using a Date Constant in an Expression
When you use a date constant in a calculation with a field in date format, you must
enclose it in single quotation marks; otherwise, it is interpreted as the number of days
between the constant and the base date (December 31, 1900, or January 1, 1901). For
example, if 022829 were not enclosed in quotation marks, the value would be interpreted
as the 22,899th day after 12/31/1900, rather than as February 28, 1999.

Example Initializing a Field With a Date Constant
The following command initializes START_DATE with the date constant 02/28/99:
COMPUTE START_DATE/MDY = '022899';

The following command calculates the number of days elapsed since January 1, 1999:
COMPUTE YEAR_TO_DATE/I4 = CURR_DATE - 'JAN 1 1999' ;

 Creating a Date or Date-Time Expression

Creating Reports 8-11

Extracting a Date Component
Date components include days, months, quarters, or years. You can write an expression
that extracts a component from a field in date format. However, you cannot write an
expression that extracts days, months, or quarters from a date that does not have these
components. For example, you cannot extract a month from a date in YY format, which
represents only the number of years.

Example Extracting the Month Component From a Date
The following example extracts the month component from SHIP_DATE, which has the
format MDYY:
COMPUTE SHIP_MONTH/M = SHIP_DATE;

If SHIP_DATE has the value March 1, 1999, the above expression returns the value 03
for SHIP_MONTH.

A calculation on a date component automatically produces a valid value for the desired
component. For example, if the current value of SHIP_MONTH is 03, the following
expression correctly returns the value 06:
COMPUTE ADD_THREE/M = SHIPMONTH + 3;

If the addition of months results in an answer greater than 12, the months are adjusted
correctly (for example, 11 + 3 is 2, not 14).

Combining Fields With Different Formats in an Expression
When using fields in date format, you can combine fields with a different order of
components within the same expression. In addition, you can assign the result of a date
expression to a field with a different order of components from the fields in the
expression.

You cannot, however, write an expression that combines dates in date format with dates
in integer, packed, decimal or character format.

Example Combining Fields With Format YYMD and MDY
Consider the two fields DATE_PAID and DUE_DATE. DATE_PAID has the format
YYMD and DUE_DATE has the format MDY. You can combine these two fields in an
expression to calculate the number of days that a payment is late:
COMPUTE DAYS_LATE/I4 = DATE_PAID - DUE_DATE;

Example Assigning a Different Order of Components to a Returned Field
Consider the field DATE_SOLD. This field contains the date on which an item is sold, in
YYMD format. The following expression adds seven days to DATE_SOLD to determine
the last date on which the item can be returned. It then assigns the result to a field with
DMY format:
COMPUTE RETURN_BY/DMY = DATE_SOLD + 7;

Using Expressions

8-12 Information Builders

Creating a Character Expression
A character expression uses alphanumeric constants, fields, concatenation operators, or
functions to derive an alphanumeric value. When you use a character expression to assign
a value to a field, you must give that field an alphanumeric format.

A character expression can consist of:

• An alphanumeric constant (character string) enclosed in single quotation marks. For
example:
COMPUTE STATE/A2 = 'NY';

• A combination of alphanumeric fields and/or constants joined by the concatenation
operator. For example:
DEFINE FILE EMPLOYEE TITLE/A19 = 'DR. ' | LAST_NAME;
END

• An alphanumeric function. For example:
DEFINE FILE EMPLOYEE INITIAL/A1 = EDIT(FIRST_NAME, '9$$$$$$$$$$');
END

Embedding a Quotation Mark in a Quote-Delimited Literal String
Under certain conditions, you can use quote-delimited strings containing embedded
quotation marks. Two contiguous quotes within a quote-delimited string are treated as a
single literal quote.

You can use quote-delimited strings in the following:

• WHERE and IF criteria containing multiple quotes.

• WHERE criteria containing: fieldname {IS, IS-NOT, IN, IN FILE, or NOT IN
FILE}.

• EDIT.

• WHEN fieldname EQ an embedded quote in a literal.

• DEFINE commands.

• DEFINE attributes in Master Files.

• Database Administrator (DBA) attributes in Master Files (for example, VALUE =
fieldname EQ an embedded quote in a literal).

• ACCEPT=, DESCRIPTION=, TITLE= attributes in Master Files.

• AS.

• DECODE.

 Creating a Character Expression

Creating Reports 8-13

Example Specifying the Data Value O’BRIEN in a Quote-Delimited
Literal String
The following example illustrates the use of quotation marks for the correct interpretation
of the data value O’BRIEN:
TABLE FILE VIDEOTRK
PRINT LASTNAME
WHERE LASTNAME IS 'O''BRIEN'
END

Concatenating Character Strings
You can write an expression that concatenates two or more alphanumeric constants
and/or fields into a single character string. The concatenation operator has two forms, as
shown in the following table:

Symbol Represents Description

| Weak concatenation Preserves trailing blanks.

|| Strong concatenation Moves trailing blanks to end
of concatenated string.

Example Concatenating Character Strings
The following example uses the EDIT function to extract the first initial from a first
name. It then uses both strong and weak concatenation to produce the last name, followed
by a comma, followed by the first initial, followed by a period:
DEFINE FILE EMPLOYEE
FIRST_INIT/A1 = EDIT(FIRST_NAME, '9$$$$$$$$$');
NAME/A19 = LAST_NAME ||(', '| FIRST_INIT |'.');
END

TABLE FILE EMPLOYEE
PRINT NAME WHERE LAST_NAME IS 'BANNING'
END

The output is:
NAME

BANNING, J.

The request evaluates the expressions as follows:
1. The EDIT function extracts the initial J from FIRST_NAME.
2. The expression in parentheses returns the value:

, J.

3. LAST_NAME is concatenated to the string derived in step 2 to produce:
Banning, J.

While LAST_NAME has the format A15 in the EMPLOYEE Master File, strong
concatenation suppresses the trailing blanks. Regardless of the suppression or
inclusion of blanks, the resulting field name, NAME, has a length of 19 characters
(A19).

Using Expressions

8-14 Information Builders

Creating a Logical Expression
A logical expression determines whether a particular condition is true. There are two
kinds of logical expressions: relational and Boolean. The entities to be compared
determine the kind of expression used:

• A relational expression returns TRUE or FALSE based on a comparison of two
individual values (either field values or constants).

• A Boolean expression returns TRUE or FALSE based on the outcome of two or
more relational expressions.

You can use a logical expression to assign a value to a numeric field. If the expression is
true, the field receives the value 1. If the expression is false, the field receives the value 0.

Reference Logical Operators
The following is a list of common operators used in logical expressions. For information
on relational operators and additional operators available for record selection using
WHERE and IF, see Chapter 5, Selecting Records for Your Report.

Operator Description

EQ Returns the value TRUE if the value on the left is equal to the value on
the right.

NE Returns the value TRUE if the value on the left is not equal to the
value on the right.

GE Returns the value TRUE if the value on the left is greater than or equal
to the value on the right.

GT Returns the value TRUE if the value on the left is greater than the
value on the right.

LE Returns the value TRUE if the value on the left is less than or equal to
the value on the right.

LT Returns the value TRUE if the value on the left is less than the value
on the right.

AND Returns the value TRUE if both operands are true.

OR Returns the value TRUE if either operand is true.

NOT Returns the value TRUE if the operand is false.

CONTAINS Contains the specified character strings.

OMITS Omits the specified character strings.

 Creating a Logical Expression

Creating Reports 8-15

Syntax How to Write a Relational Expression
Any of the following are valid for a relational expression
value {EQ|NE} value
value {GE|GT} value
value {LE|LT} value
character_value {CONTAINS|OMITS} character_value

where:
value

Is a field value or constant.
character_value

Is a character string. If it contains blanks, the string must be enclosed in single
quotation marks.

Syntax How to Write a Boolean Expression
Either of the following are valid for a Boolean expression
(relational_expression) {AND|OR} (relational_expression)

NOT (logical_expression)

where:
relational_expression

Is an expression based on a comparison of two individual values (either field values
or constants).

logical_expression

Is an expression that evaluates to the value TRUE or FALSE. If the expression is
true, the field receives the value 1. If the expression is false, the field receives the
value 0. The expression must be enclosed in parentheses.

Using Expressions

8-16 Information Builders

Creating a Conditional Expression
A conditional expression assigns a value based on the result of a logical expression. The
assigned value can be numeric or alphanumeric. A conditional expression can include up
to 16 IF criteria.

Note: Unlike selection criteria using IF, all alphanumeric values in conditional
expressions must be enclosed in single quotation marks. For example, IF COUNTRY EQ
'ENGLAND'.

Syntax How to Write a Conditional Expression
IF expression1 THEN expression2 [ELSE expression3]

where:
expression1

Is the expression that is evaluated to determine whether the field is assigned the
value of expression2 or of expression3.

expression2

Is an expression that results in a format compatible with the format assigned to the
field. It may be a conditional expression, in which case you must enclose it in
parentheses.

expression3

Is an expression that results in a format compatible with the format assigned to the
field. Enclosure of the expression in parentheses is optional.

ELSE

Is optional, along with expression3. However, if you do not specify an ELSE
condition and the IF condition is not met, the value is taken from the last evaluated
condition.
Note that the final sorted report may display mixed values. This depends on whether
a DEFINE or a COMPUTE is used, and if a data record is evaluated before or after
aggregation.

Note: The expressions following THEN and ELSE must result in a format that is
compatible with the format assigned to the field. Each of these expressions may itself be
a conditional expression. However, the expression following IF may not be an IF ...
THEN ... ELSE expression (for example, IF ... IF ...).

 Creating a Conditional Expression

Creating Reports 8-17

Example Supplying a Value With a Conditional Expression
The following example uses a conditional expression to assign the value NONE to the
field BANK_NAME when it is missing a data value (that is, when the field has no data in
the data source):
DEFINE FILE EMPLOYEE
BANK_NAME/A20 = IF BANK_NAME EQ ' ' THEN 'NONE'
ELSE BANK_NAME;
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND BANK_NAME
BY EMP_ID BY BANK_ACCT
END

The output is:

Using Expressions

8-18 Information Builders

Example Defining a True or False Condition
You can also define a true or false condition and then test it to control report output. The
following example assigns the value TRUE to the field MYTEST if either of the
relational expressions in parentheses is true. It then tests the value of MYTEST:
DEFINE FILE EMPLOYEE
MYTEST= (CURR_SAL GE 11000) OR (DEPARTMENT EQ 'MIS');
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL AND DEPARTMENT
BY EMP_ID
IF MYTEST IS TRUE
END

The output is:

Note: Testing for a TRUE or FALSE condition is valid only with the IF command. It is
not valid with WHERE.

Creating Reports 9-1

CHAPTER 9

Customizing Tabular Reports

Topics:

• Creating Paging and Numbering

• Separating Sections of a Report:
SKIP-LINE and UNDER-LINE

• Suppressing Fields: SUP-PRINT or
NOPRINT

• Creating New Column Titles: AS

• Customizing Column Names: SET
QUALTITLES

• Positioning Columns: IN

• Reducing a Report’s Width:
FOLD-LINE and OVER

• Controlling Column Spacing: SET
SPACES

• Column Title Justification

• Customizing Reports With SET
Parameters

• Producing Headings and Footings

• Conditionally Formatting Reports
With the WHEN Clause

• Controlling the Display of Empty
Reports

FOCUS provides a variety of formatting options that enable you
to customize your reports. For example, you can specify page
breaks, rename report column titles, and add subfoot text to the
bottom of pages.

Note: FOCUS formats reports automatically using defaults
based on the formats of fields. However, you can override these
defaults to customize your report format to suit your individual
requirements.

Customizing Tabular Reports

9-2 Information Builders

Creating Paging and Numbering
The appearance of your report can be enhanced by controlling paging and page
numbering. You can:

• Specify a page break (PAGE-BREAK).

• Reposition page numbers (TABPAGENO).

• Suppress page numbers (SET PAGE).

• Prevent an undesirable split (NOSPLIT).

Specifying a Page Break: PAGE-BREAK
Use the PAGE-BREAK option to start a new page each time the specified sort field value
changes or to prevent information that should be grouped together from being presented
over more than one page.

To specify a page break, use PAGE-BREAK in either an ON phrase or BY phrase
immediately after the sort field on which you want to break the page. You can also use
PAGE-BREAK to:

• Reset the report page to 1 at specified points (REPAGE).

• Specify conditional page breaks in the printing of a report (with WHEN).

Syntax How to Specify a Page Break
The syntax is

{ON|BY} fieldname PAGE-BREAK [REPAGE][WHEN expression;]

where:

fieldname

Is a sort field. A change in the sort field value causes a page-break.

REPAGE

Resets the page number to 1 at the sort break or, if WHEN is used, whenever the
conditions in the WHEN clause are met.

WHEN expression

Specifies conditional page breaks in the printing of a report as determined by a
Boolean expression (see Using Direct Operators in Headings and Footings on page
9-44).

 Creating Paging and Numbering

Creating Reports 9-3

Reference Usage Notes for Page Breaks
• Page headings and column titles will appear at the top of each new page.

• Put the PAGE-BREAK command on the lowest-level sort field at which the page
break is to occur.

• Page breaks automatically occur whenever a higher-level sort field changes.

• PAGE-BREAK is ignored when report output is stored in HOLD, SAVE, or SAVB
files (see Chapter 11, Saving and Reusing Report Output).

Example Specifying a Page Break
For example:

TABLE FILE EMPLOYEE
PRINT EMP_ID
BY SALARY IN-GROUPS-OF 5000
BY PCT_INC BY DAT_INC
ON SALARY PAGE-BREAK
END

The first two pages of this report display as:

Customizing Tabular Reports

9-4 Information Builders

Inserting Page Numbers: TABPAGENO
By default, FOCUS reserves the first two lines of each report page: the first line contains
the page number at the left margin—that is, in the top-left corner of the page—and the
following line is blank. You can change the position of the page number with the
TABPAGENO system variable.

TABPAGENO contains the page number of the current page and acts like a field name.
Therefore, it can be positioned in a heading or footing (or subhead/subfoot). The default
page number in the top left-hand corner is automatically suppressed when this variable is
used.

Example Inserting Page Numbers
For example, this request

TABLE FILE PROD
"<TABPAGENO"
PRINT PACKAGE AND UNIT_COST
BY PROD_NAME BY PROD_CODE
ON PROD_NAME PAGE-BREAK
END

creates the following report (of which the first two pages are shown):

Note that FOCUS continues to reserve the top two lines of every report page.

 Creating Paging and Numbering

Creating Reports 9-5

Suppressing Page Numbers: SET PAGE
Automatic page numbering can also be suppressed with the SET PAGE command.

Syntax How to Suppress Page Numbers
To suppress page numbering, the syntax is

SET PAGE = {OFF|NOPAGE|TOP}

where:

OFF

Suppresses automatic page numbering. You can still use the variable TABPAGENO
as described in Inserting Page Numbers: TABPAGENO on page 9-4. Note that
FOCUS reserves the top two lines of every page.

NOPAGE

Suppresses all page indicators and makes the first two lines of each report page
available for your use. NOPAGE does not issue page ejects; they are issued if you
use SET PAGE=OFF.

TOP

Omits the line at the top of each page of the report output for the page number and
the blank line that follows it. The first line of the report output contains the heading,
if one was specified, or the column titles, if there is no heading.

Preventing an Undesirable Split
Page breaks sometimes occur where report information has been logically grouped by
sort field(s), causing one or two lines to appear by themselves on the next page or screen.
To prevent this, use NOSPLIT in either an ON phrase or immediately after the first
reference to the sort field in a BY phrase.

Syntax How to Prevent an Undesirable Split
The syntax is

{ON|BY} fieldname NOSPLIT

where:

fieldname

Is the name of the sort field for which sort groups will be kept together on the same
page.

Whenever the value of the specified field changes, FOCUS determines if the total number
of lines related to the new value can fit on the current page. If they cannot, the page
breaks and the group of lines appears on the next page.

Customizing Tabular Reports

9-6 Information Builders

Reference Usage Notes for Preventing an Undesirable Split
• Only one NOSPLIT option is allowed per report. If a PAGE-BREAK option also

exists in the request, it must relate to a higher-level sort field; otherwise, NOSPLIT
will be ignored.

• Subtotals, footings, subheads, and subfoots are placed on the same page as the detail
lines; headings are placed on the new page.

• NOSPLIT is ignored when report output is stored in HOLD, SAVE, or SAVB files
(see Chapter 11, Saving and Reusing Report Output).

• NOSPLIT is not compatible with the TABLEF command and produces an FOC037
error message.

Example Preventing an Undesirable Split
TABLE FILE EMPLOYEE
PRINT DED_CODE AND DED_AMT
BY PAY_DATE BY LAST_NAME
ON LAST_NAME NOSPLIT
END

Depending upon how many lines your output device is set to, the first two pages of the
previous request might display as:

 Creating Paging and Numbering

Creating Reports 9-7

Here are the first two pages without NOSPLIT:

The report without NOSPLIT has an undesirable split for Cross on Page 2, whereas the
report using NOSPLIT does not.

Customizing Tabular Reports

9-8 Information Builders

Separating Sections of a Report: SKIP-LINE and
UNDER-LINE

To make a detailed report easier to read and interpret, you can separate sections of it—
individual lines, or entire sort groups—by inserting blank lines between them, or (for sort
groups only) by underlining them.

Adding Blank Lines: SKIP-LINE
Report information often stands out more clearly if lines are skipped between individual
lines, or between sort groups. You can use SKIP-LINE with either a sort field or a display
field.

• If you use SKIP-LINE with a sort field, FOCUS inserts a blank line between each
section of the report.

• If you use SKIP-LINE with a display field, FOCUS inserts a blank line between each
line of the report—in effect, double-spacing the report. Double spacing is especially
helpful when a report will be used as a review document, as it makes it easy for the
reader to write comments next to individual lines.

Syntax How to Add Blank Lines
To add blank lines, use SKIP-LINE with the keyword ON, or BY. Use the WHEN clause
to specify conditional blank lines in the printing of a report. The syntax is

display fieldname SKIP-LINE
{ON|BY} fieldname SKIP-LINE [WHEN expression;]

where:

display

Is any display command.

fieldname

Is used so that when the value of this field changes, a blank line is inserted before the
next set of values.

WHEN expression

Specifies conditional blank lines in the printing of a report as determined by a
Boolean expression (see Using Direct Operators in Headings and Footings on page
9-44).

You can use only one SKIP-LINE in each report request. You do not have to enter it on
its own line; instead, include it after the field name or sort field for which you want to
insert a blank line.

 Separating Sections of a Report: SKIP-LINE and UNDER-LINE

Creating Reports 9-9

Reference Usage Notes for Adding Blank Lines
Keep the following in mind when using SKIP-LINE:

• If the field name is a sort field, a blank line is inserted just before every change in
value of the sort field.

• If the field name is a display field, a blank line is inserted after every printed line.
The WHEN clause does not apply to display fields.

• This is one of the only ON conditions that does not have to refer solely to sort
control (BY) fields.

• Only one SKIP-LINE option is allowed per request and it may affect more than one
sort field.

Example Adding Blank Lines
For example:

DEFINE FILE EMPLOYEE
INCREASE/D8.2M = .05*CURR_SAL;
CURR_SAL/D8.2M=CURR_SAL;
NEWSAL/D8.2M=CURR_SAL + INCREASE;
END

TABLE FILE EMPLOYEE
PRINT CURR_SAL OVER INCREASE OVER NEWSAL
BY EMP_ID BY LAST_NAME BY FIRST_NAME
ON EMP_ID SKIP-LINE
END

The first part of the report output is shown below:

Customizing Tabular Reports

9-10 Information Builders

Underlining Values: UNDER-LINE
Drawing a line across the page after all of the information for a particular section has
been displayed can enhance the readability of a printed report.

Syntax How to Underline Values
The syntax is

{ON|BY} fieldname UNDER-LINE [WHEN expression;]

where:

fieldname

Is used so that when the value of the field changes, a line is drawn. A line is
automatically drawn after any other option such as RECAP or SUB-TOTAL (but
before PAGE-BREAK).

WHEN expression

Specifies conditional underlines in the printing of a report, as determined by a
Boolean expression (see Inserting Page Numbers: TABPAGENO on page 9-4).

Example Underlining Values
For example:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND BANK_ACCT AND LAST_NAME
BY BANK_NAME
ON BANK_NAME UNDER-LINE
END

The request produces the following report:

 Suppressing Fields: SUP-PRINT or NOPRINT

Creating Reports 9-11

Suppressing Fields: SUP-PRINT or NOPRINT
You can create reports that do not display the values or titles of fields, but only use those
fields to produce specific effects. FOCUS provides options to suppress the printing of
field values: NOPRINT and SUP-PRINT.

Syntax How to Suppress Fields
The syntax is:

display fieldname {SUP-PRINT|NOPRINT}
{ON|BY} fieldname {SUP-PRINT|NOPRINT}

Valid values are:

display

Is any display command.

fieldname

Is a sort field or display field. The values of the field may be used, but they will not
be displayed.

Reference Usage Notes for Suppressing Fields
• If you put a NOPRINT or SUP-PRINT phrase in a computed field, you must then

repeat AND COMPUTE before the next computed field.

• If you use the NOPRINT option with a BY field and create a HOLD file, the BY
field is excluded from the file. For example, a request that includes the phrase

BY DEPARTMENT NOPRINT

will result in a HOLD file that does not contain the DEPARTMENT field.

Customizing Tabular Reports

9-12 Information Builders

Example Suppressing Fields
For example, to print a list of employee names in alphabetical order, if you simply used
the request

TABLE FILE EMPLOYEE
PRINT LAST_NAME
END

you would get a report that lists the last names of employees in the order they were
entered into the data source:

To print the last names in alphabetical order, use NOPRINT in conjunction with a BY
phrase

TABLE FILE EMPLOYEE
PRINT LAST_NAME
BY LAST_NAME NOPRINT
END

which produces the desired result:

 Suppressing Fields: SUP-PRINT or NOPRINT

Creating Reports 9-13

Example Suppressing a Sort Field
Consider the following example, where the report is sorted, but the field that determines
the sort order is not displayed:

TABLE FILE SALES
PRINT UNIT_SOLD AND DELIVER_AMT
BY CITY BY PROD_CODE BY RETAIL_PRICE
ON RETAIL_PRICE SUP-PRINT
END

The report is as follows:

Customizing Tabular Reports

9-14 Information Builders

Also, consider the following example

TABLE FILE CAR
SUM SALES BY COUNTRY
BY CAR
ON COUNTRY SUB-TOTAL SUP-PRINT PAGE-BREAK
END

which generates this report (only the beginning is shown):

 Creating New Column Titles: AS

Creating Reports 9-15

Creating New Column Titles: AS
Use the AS option to rename existing column titles in your reports. Any of the following
titles can be changed with an AS phrase:

• ACROSS titles can be replaced by one line of text only.

• A SUBTOTAL line can be replaced by one line of text only.

• FOR phrases.

• Fields for the MATCH command.

Syntax How to Create Column Titles
The syntax for changing default titles is

field AS 'title1, title2,...'

where:

field

Can be a sort field, display field, column total, or row total.

title

Is the new column title enclosed in single quotation marks.

To specify multiple lines in a column title, separate each line’s text with commas. Up
to five lines are allowed.

Customizing Tabular Reports

9-16 Information Builders

Reference Usage Notes for New Column Titles
• When using FOLD-LINE, the titles appear one over the other. No more than one line

per title is allowed with FOLD-LINE. (See Reducing a Report’s Width: FOLD-LINE
and OVER on page 9-22.)

• The use of a title line larger than the format size of the data is one convenient way to
space out a report across the columns of the page. For instance,

PRINT UNITS BY MONTH AS ' MONTH'

shifts the title for MONTH to the right and all other columns, in this case UNITS,
shift to the right. For more information on changing the column position, see
Reducing a Report’s Width: FOLD-LINE and OVER on page 9-22.

• If you do not want any field name or title displayed in the report, you can also use
the AS phrase by entering two consecutive single quotation marks. For example:

PRINT LAST_NAME AS ''

To display underscores, enclose blanks in single quotation marks.

• If you put an AS phrase in a computed field, you must then repeat the keyword
COMPUTE before the next computed field.

Example Creating New Column Titles
For example:

TABLE FILE EMPLOYEE
PRINT FIRST_NAME AS 'NAME' AND LAST_NAME AS ''
BY DEPARTMENT
BY EMP_ID AS 'EMPLOYEE,NUMBER'
END

This request produces the following report:

 Customizing Column Names: SET QUALTITLES

Creating Reports 9-17

Customizing Column Names: SET QUALTITLES
The FOCUS SET command, SET QUALTITLES, enables you to determine whether or
not duplicate field names appear as qualified column titles in TABLE output. (For more
information about long and qualified field names, see Chapter 2, Displaying Report
Data.)

Syntax How to Customize Column Headings
The syntax is

SET QUALTITLES = {ON|OFF}

where:

ON

Enables qualified column titles when duplicate field names exist and FIELDNAME
is set to NEW.

OFF

Disables qualified column titles. OFF is the default value.

SET QUALTITLES may also be issued from within a TABLE request.

Qualified column titles are automatically used, even if qualified field names are not used
in the request.

Reference Usage Notes for Qualified Column Titles
• AS names are used if duplicate field names are referenced in a MATCH request.

• AS names are used when duplicate field names exist in a HOLD file.

Customizing Tabular Reports

9-18 Information Builders

Positioning Columns: IN
FOCUS automatically formats a page and uses common default values for determining
column positions and spacing. You can override these defaults by specifying the absolute
or relative column position where a data value is to appear on a report.

Syntax How to Position Columns
The syntax is

field IN {n|+n}

Valid values are:

field

Is the field (that is, the column) that you want to move.

n

Is a number indicating the absolute position of the column.

+n

Is a number indicating the relative position of the column. That is, +n is the number
of characters to the right of the last column.

Reference Usage Notes for Positioning Columns

• The IN phrase can be used with ACROSS to specify both the starting column of the
entire ACROSS set as well as the spacing between each column within the
ACROSS.

• When one field is positioned over another (for example, when OVER or
FOLD-LINE is used; see Reducing a Report’s Width: FOLD-LINE and OVER on
page 9-22), the positions apply to the line on which the referenced field occurs.

 Positioning Columns: IN

Creating Reports 9-19

Example Positioning Columns
For example:

TABLE FILE EMPLOYEE
PRINT BANK_NAME IN 1
BY HIGHEST BANK_ACCT IN 26
BY LAST_NAME IN 40
END

This request produces the following report. There is a blank line following SMITH
because LAST_NAME is a sort field and there are two employees named Smith in the
database.

Example Positioning Columns With ACROSS
The IN phrase can be used with ACROSS to specify both the starting column of the
entire ACROSS set as well as the spacing between each column within the ACROSS, as
shown in the following example:

TABLE FILE CAR
SUM UNITS IN +1 ACROSS CAR IN 30
BY COUNTRY
END

This will place one extra space between the data columns in the matrix and display the
ACROSS sets beginning in Position 30, as shown in the first page of the report below.

Customizing Tabular Reports

9-20 Information Builders

Example Positioning Columns With FOLD-LINE
When one field is positioned over another (for example, when OVER or FOLD-LINE is
used, see Reducing a Report’s Width: FOLD-LINE and OVER on page 9-22), the
positions apply to the line on which the referenced field occurs, as in the following
example:

TABLE FILE CAR
SUM RCOST BY CAR
BY COUNTRY IN 25
ON COUNTRY FOLD-LINE
END

which creates this report, in which COUNTRY starts in column 25 and RCOST appears
on the second line.

 Positioning Columns: IN

Creating Reports 9-21

Example Positioning Columns With OVER
Consider the following report request

TABLE FILE CAR
PRINT SALES IN 50 OVER RCOST IN 50
BY COUNTRY IN 10 BY MODEL
END

which generates this report:

Customizing Tabular Reports

9-22 Information Builders

Reducing a Report’s Width: FOLD-LINE and OVER
Wide reports are difficult to read, especially on a screen. To reduce a report’s width, use
FOLD-LINE and OVER.

Compressing the Columns of Reports: FOLD-LINE
A single line on a report can be folded to compress it into fewer columns. This enables
you to display a wide report on a narrow screen and enhance the appearance of many
reports which might otherwise have wasted space under sort control fields which change
infrequently.

Syntax How to Compress Report Columns
The syntax for specifying the point of line fold is

display fieldname ... FOLD-LINE fieldname ...

{ON|BY} fieldname FOLD-LINE

where:

display

Is any display command.

fieldname

Causes columns to be placed on a separate line when the value of the field changes
in the BY or ON phrase. The field name may be a sort field or display field. When it
is a display field, it will be placed under the preceding field.

Reference Usage Notes for Compressing Report Columns

• The second half of the folded line is offset by two spaces from the first part when the
line is folded on a sort control field.

• Instead of FOLD-LINE, you can also use the OVER phrase to decrease the width of
reports, described in Decreasing the Width of a Report: OVER on page 9-23.

• When the point of line folding is after a display field, there is no offset. A simple
way to change the line alignment is to use a title with leading blanks. (See Creating
New Column Titles: AS on page 9-15.)

 Reducing a Report’s Width: FOLD-LINE and OVER

Creating Reports 9-23

Example Compressing Report Columns
For example:

TABLE FILE EMPLOYEE
SUM ED_HRS BY DEPARTMENT
PRINT ED_HRS AND LAST_NAME AND FIRST_NAME
BY DEPARTMENT BY HIGHEST BANK_ACCT
ON DEPARTMENT FOLD-LINE
END

This request produces the following report.

Decreasing the Width of a Report: OVER
One way to decrease the width of your report (particularly when using the ACROSS
phrase) is to use OVER. OVER places field names over one another. The syntax is

display fieldname1 OVER fieldname2 OVER fieldname3 ...

where:

display

Is any display command.

fieldname

Causes the fields listed to be placed over each other, instead of printed beside each
other in a row. The field names must be a display field.

Customizing Tabular Reports

9-24 Information Builders

Reference Usage Notes for Decreasing Report Width
Keep the following in mind when using OVER:

• For more complex combinations of IN and OVER, you may want to create subfoots
with data. Subfoots with data are discussed in Producing Headings and Footings on
page 9-29.

• Text fields cannot be specified with OVER.

Example Decreasing the Width of a Report
For example:

TABLE FILE EMPLOYEE
SUM GROSS OVER DED_AMT OVER
COMPUTE NET/D8.2M = GROSS - DED_AMT;
ACROSS DEPARTMENT
END

The request produces the following report. Notice the ACROSS values display to the left,
not directly above the data values.

Without the OVER phrase, the report would look like this:

 Controlling Column Spacing: SET SPACES

Creating Reports 9-25

Controlling Column Spacing: SET SPACES
By default, FOCUS puts one or two spaces between report columns, depending on the
output width. The SET SPACES command enables you to control the number of spaces
between columns in a report.

Syntax How to Control Column Spacing
The syntax is:

SET SPACES = {n|AUTO}

Valid values are:

n

Is a number indicating from 1 to 8 spaces.

AUTO

Specifies that FOCUS automatically puts one or two spaces between columns
depending on report output and available output length. AUTO is the default setting.

SET SPACES may also be issued from within a TABLE request.

For ACROSS phrases, SET SPACES n controls the distance between ACROSS sets.
Within an ACROSS set, the distance between fields is always one space and cannot be
changed.

Example Controlling Column Spacing
The following example illustrates the use of ACROSS with SET SPACES:

TABLE FILE CAR
SUM DEALER_COST RETAIL_COST ACROSS CAR BY COUNTRY
IF CAR EQ 'ALFA ROMEO' OR 'BMW'
ON TABLE SET SPACES 8
END

The ACROSS set consists of the fields DEALER_COST and RETAIL_COST. The
distance between each set is eight spaces.

Customizing Tabular Reports

9-26 Information Builders

Column Title Justification
You can specify whether column titles in a report are left justified, right justified, or
centered. By default, column titles for alphanumeric fields are left justified, and column
titles for numeric and date fields are right justified over the displayed column.

Syntax How to Justify Column Titles
The syntax to alter default justification is

fieldname [alignment] [/format]

where:

alignment

Specifies the alignment of the column title.

/R specifies that the column title is to be right justified.

/L specifies that the column title is to be left justified.

/C specifies that the column title is to be centered.

/format

Is an optional format specification for the field.

Reference Usage Notes for Justifying Column Titles
• You may specify justification for display fields, BY fields, ACROSS fields, column

totals, and row totals (see Chapter 2, Displaying Report Data). For ACROSS fields,
data values, not column titles, are justified as specified.

• For display commands and row totals only, the justification parameter may be
combined with a format specification, which precedes or follows the justification
parameter (for example, PRINT CAR/A8/R MODEL/C/A15).

• If a title is specified with an AS phrase or in the Master File, that title will be
justified as specified for the field.

• When multiple ACROSS fields are requested, justification is performed on the
lowest ACROSS level only. All other justification parameters for ACROSS fields
are ignored.

 Customizing Reports With SET Parameters

Creating Reports 9-27

Example Justifying Column Titles
The following example illustrates column title justification with a format specification, a
BY field specification, and an AS phrase specification:

TABLE FILE CAR
PRINT MODEL/A10 STANDARD/A15/R AS 'RJUST,STANDARD' BY CAR/C
WHERE CAR EQ 'JAGUAR' OR 'TOYOTA'
END

Customizing Reports With SET Parameters
Most SET commands that change system defaults may be issued from within a report
request. Many SET command parameters can be used to enhance the readability and
usefulness of your reports. The SET command, when used in this manner, affects only
the request in which it occurs. For a complete list of SET parameters and acceptable
values, see the Developing Applications manual.

Syntax How to Use SET Parameters in Requests
The syntax is

ON TABLE SET parameter value [AND parameter value...]

where:

parameter

Is the SET command parameter that you wish to change.

value

Replaces the default value.

Customizing Tabular Reports

9-28 Information Builders

Example Setting Parameters in a Report Request
For example, this request changes the NODATA character for missing data from a period
(default) to the word NONE. No equal sign is allowed.

TABLE FILE EMPLOYEE
PRINT CURR_SAL
BY LAST_NAME BY FIRST_NAME
ACROSS DEPARTMENT
ON TABLE SET NODATA NONE
END

This request produces the following report:

 Producing Headings and Footings

Creating Reports 9-29

Producing Headings and Footings
You can use the variety of headings and footings to clarify the information presented in
your reports. You may create up to 57 lines of headings and footings in a single report
request. The following diagram illustrates the options available:

* * * * * * * * *
* ** *
* * * * * * * * *

* * * * * * * * *

Page Footing

Subfoots

Subheads

Page HeadingReport Heading Report Footing

Customizing Tabular Reports

9-30 Information Builders

Report and Page Headings
A report heading is text that appears on the top of the first page of a report. A page
heading is text that appears on the top of every page of a report. In general, the heading is
composed of text that you supply in your report request, enclosed in double quotation
marks.
Note: If the ending quotation mark of the heading text is omitted, all subsequent lines of
the request will be treated as part of the heading.

Syntax How to Create a Report Heading
To create a report heading, the syntax is

ON TABLE [PAGE-BREAK AND] SUBHEAD
"text"

where:

PAGE-BREAK

Is an optional phrase that positions the report heading on a separate page, which is
then followed by the first page of the report itself. If you do not use PAGE-BREAK,
the report heading appears on Page 1, followed immediately by the page heading and
column titles.

text

Is text that you supply between quotation marks that will appear as a heading. Each
line of a heading can have 128 characters, and may occupy from 1 to 57 lines of the
page (unless other footings and headings are used). The text must be on a line by
itself and must immediately follow the SUBHEAD command.

Syntax How to Create a Page Heading
To place a heading on every page of the report, the syntax is

TABLE FILE filename
[HEADING [CENTER]]
"text"

where:

HEADING

Is optional if you place the text before the first display command; otherwise, it is
required to identify the text as a heading. The command CENTER centers the
heading over the text automatically.

text

Is the text placed within quotation marks that will appear on every page. The text can
be split over multiple lines and must begin on the line immediately following the
HEADING command.

If you supply two or more text lines between quotation marks, the lines are automatically
adjusted into pairs to provide coverage across the printed page.

To position heading text, use spot markers as described in Positioning Text on page 9-39.
Note: A total of 6,500 characters of heading text may be supplied in a report.

 Producing Headings and Footings

Creating Reports 9-31

Example Creating a Report Heading
For example:

TABLE FILE EMPLOYEE
SUM GROSS
BY DEPARTMENT BY HIGHEST PAY_DATE
ON TABLE PAGE-BREAK AND SUBHEAD
"PLEASE RETURN THIS TO MARY SMITH"
END

This request produces the following report (only the page preceding the body of the
report has the subhead):

Customizing Tabular Reports

9-32 Information Builders

Example Creating a Page Heading
For example:

TABLE FILE EMPLOYEE
"ACCOUNT REPORT FOR DEPARTMENT"
PRINT CURR_SAL BY DEPARTMENT BY HIGHEST BANK_ACCT
BY EMP_ID
ON DEPARTMENT PAGE-BREAK
END

This request produces the following two-page report:

 Producing Headings and Footings

Creating Reports 9-33

Example Creating a Multi-Line Heading
For example:

TABLE FILE PROD
" DETAIL LISTING OF AREA SALES
 DISTRIBUTION"
" FIRST QUARTER OF YEAR
 BRANCH MANAGERS"
BY PROD_CODE NOPRINT
END

The report heading across the top of each page appears as:

DISTRIBUTION and BRANCH MANAGERS are on the far right of the report because
of trailing blanks in the procedure. The open and closing quote marks indicate the length
of the text. To avoid extra blanks, code <0X.

Report and Page Footings
A report footing is text that appears at the bottom of the last page of a report. A page
footing is text that appears on the bottom of every page of a report. In general, the footing
is composed of text that you can supply, in a report request, between quotation marks.

Note: If the ending quotation mark of the footing text is omitted, all subsequent lines of
the request will be treated as part of the footing.

Syntax How to Create a Report Footing
To place a footing on the last page of the report, the syntax is

ON TABLE [PAGE-BREAK AND] SUBFOOT
"text"

where:

PAGE-BREAK

Is an optional phrase that positions the report footing on the last page by itself. If not
used, the report footing appears as the last line on the report.

Note: If PAGE-BREAK is specified in the BY phrase and not in the ON TABLE
phrase, the report footing appears as the last line on the last page of the report.

text

Is the text you supply in quotation marks that appears as a footing. The text begins
on the line following the keyword SUBFOOT. Each line of a footing can be 128
characters in length, and may occupy from one to 57 lines of the page (unless other
footings and headings are used).

Customizing Tabular Reports

9-34 Information Builders

Syntax How to Create a Page Footing
To display a footing on every page of a report, the syntax is

FOOTING [CENTER] [BOTTOM]
"text"

where:

FOOTING

Is the keyword that identifies the text as a footing.

CENTER

Centers the footing automatically.

BOTTOM

Places the footing at the bottom of the page. If BOTTOM is not specified, the footing
text appears two lines below the report.

text

Is the text you place within quotation marks that will appear on every page. Each line
of a footing can be 128 characters in length, and may occupy from one to 57 lines of
the page.

Example Creating a Page Footing
For example, this request

TABLE FILE CAR
WRITE SALES BY COUNTRY
FOOTING
"THIS IS HOW A FOOTNOTE IS ADDED TO EACH"
"PRINTED PAGE"
END

The output is:

 Producing Headings and Footings

Creating Reports 9-35

Subheads
A subhead is text that can be placed before the sort field values change.

Note: If the ending quotation mark of the subheading text is omitted, all subsequent lines
of the request will be treated as part of the subheading.

Syntax How to Create a Subhead
The syntax is

{ON|BY} fieldname SUBHEAD
"text"
[WHEN expression;]

where:

fieldname

Is the sort field before which the text will be inserted.

text

Is the text you supply between double quotation marks that will be printed following
the SUBHEAD phrase. The total number of subheads and subfoots in one report
request may not exceed nine.

WHEN expression

Specifies a conditional subhead in the printing of a report, as determined by a
Boolean expression. Used with SUBHEAD, the WHEN clause must be placed on a
line following the text you enclose in double quotation marks.

Customizing Tabular Reports

9-36 Information Builders

Example Using Subheads
For example, this request

TABLE FILE PROD
SUM PACKAGE AND UNIT_COST
BY PROD_NAME NOPRINT BY PROD_CODE
ON PROD_NAME SUBHEAD
" SUMMARY FOR <PROD_NAME"
END

creates the report below:

Subfoots
A subfoot is text that can be placed after the sort field values change. MULTILINES can
also be used with SUBFOOT to suppress SUBFOOTs.

Note: If the ending quotation mark of the subfooting text is omitted, all subsequent lines
of the request will be treated as part of the subfooting.

 Producing Headings and Footings

Creating Reports 9-37

Syntax How to Create Subfoots
The syntax is

{ON|BY} fieldname SUBFOOT [MULTILINES]
"text"
[WHEN expression;]

where:

fieldname

Is the field after which the text will be inserted.

text

Is the text you supply between double quotation marks that will be printed following
the SUBFOOT phrase. The total number of subheads and subfoots in one report
request may not exceed nine.

MULTILINES

Is used to suppress the SUBFOOT when there is only one line of output for the BY
group. Note that MULTI-LINES is a synonym for MULTILINES.

FOCUS also allows you to suppress grand totals using the NOTOTAL phrase as
described in Chapter 7, Including Totals and Subtotals.

WHEN expression

Specifies a conditional subfoot in the printing of a report, as determined by a
Boolean expression (see Using Direct Operators in Headings and Footings on page
9-44). Used with SUBFOOT, WHEN must be placed on the line following the text
you enclose in double quotation marks.

Reference Usage Notes for Creating Subfoots
• When a SUBFOOT follows a RECAP, the default display of the RECAP values is

suppressed, as it is assumed that the SUBFOOT is being used to display the RECAP.
Notice that the phrase <DEPAR_NET was replaced with the actual value of
DEPAR_NET.

• A SUBFOOT can also be used as a complete report request without any display
command if data is embedded in the text, because fields in the text become implicit
display fields. The default display command is SUM. For more information, see
Using Data in Headings and Footings on page 9-41.

• If the report request contains the command SUM and the display field is specified in
a subfoot, the value is summed. Use direct operators with fields specified in
subfootings.

Customizing Tabular Reports

9-38 Information Builders

Example Using Subfoots
This example

TABLE FILE EMPLOYEE
SUM DED_AMT AND GROSS
BY DEPARTMENT BY HIGHEST PAY_DATE
ON DEPARTMENT RECAP
DEPAR_NET/D8.2=GROSS-DED_AMT;
ON DEPARTMENT SUBFOOT
"DEPARTMENT NET = <DEPAR_NET"
END

produces the following report:

 Producing Headings and Footings

Creating Reports 9-39

Positioning Text
The positioning of text and data in headings, footings, subheads, and subfoots can be
controlled by a spot marker, which identifies the column where the text should begin. A
spot marker consists of a left caret (<) followed by a number indicating the absolute or
relative column position. The right caret (>) is optional and can make the spot marker
clearer to a reader.

The various ways spot markers can be used are illustrated in the chart below:

Marker Example Usage

<n or <n> <50 The next character starts in column 50.

<+n or <+n> <+4 The next character starts four columns from the last
non-blank character.

<-n or <-n> <-1 The next character starts one column to the left of the
last character and suppresses or writes over all or part
of a field.

</n or </n> </2 Skip two lines.

<0X or <0X> <0X Positions the next character immediately to the right
of the last character (skip zero columns). This is used
when you have more than two lines between the
double quotation marks in a stored procedure that
make up a single line of heading, subhead, footing, or
subfoot display. No spaces are inserted between the
spot marker and the start of a continuation line.

Note: If you place a skip line spot marker on a line by itself, it will skip one more line
than you asked for. To avoid this, put the skip line marker on the same line with
additional text from the report. In addition, each field needs one space for field attributes;
if a field placed with a spot marker overlaps an existing field, unpredictable results may
occur.

Customizing Tabular Reports

9-40 Information Builders

Example Positioning Text
• To place a character in a specific column:

"<50 SUMMARY REPORT"

The letter S in SUMMARY will start in Position 50 of the line.

• To place a substituted value in a specific column:

"<15 COST OF VEHICLE IS <40 <RCOST>"
"<10 <DIVISION <30 <AREA <50 <DATE"

• To add spaces to the right of the last non-blank character:

"DAILY REPORT <DATE <+5 <LOCATION <+5 <PRODUCT"

• To move to the left of the last non-blank character:

"<60 CONFIDENTIAL <-40 <FIRST_NAME"

Skipping backward may cover other text on a line. This may be useful in some cases,
but in general should be avoided.

• To show four lines of heading text between double quotation marks:

"THIS HEADING <0X
SHOULD APPEAR <0X
ON ONE <0X
LINE"

The above produces the line:

THIS HEADING SHOULD APPEAR ON ONE LINE

• To position a long line:

"<20 DETAIL REPORT WITH LOTS OF TEXT ON ONE LINE
<100 EVEN THOUGH IT IS ON TWO LINES IN THE REQUEST"

• To skip multiple lines:

"</4 THIS IS ON THE FIFTH LINE DOWN"

 Producing Headings and Footings

Creating Reports 9-41

Using Data in Headings and Footings
You can embed the values of fields in headings, subheads, subfoots, and footings.

Syntax How to Insert Data in Headings and Footings
To put a value in one of these titles, use the following syntax:

<fieldname
<fieldname>

where:

<fieldname

Places the data value in the heading or footing, and suppresses trailing blanks.

<fieldname>

Places the data value in the heading or footing, and retains trailing blanks.

Reference Usage Notes for Data in Headings and Footings
• Trailing blanks in alphanumeric fields may be omitted by using only the opening <

character for data in headings. For example, if AREA is a 16-character alphanumeric
field, the line is expanded by 16 characters at the point of substitution of the
retrieved value. If only the opening character is used, only the non-blank characters
of the particular value are substituted. For example, if <AREA retrieves the value of
EAST, only four characters plus one leading blank are inserted in the line, rather
than a full 16 characters which the data value could contain.

• A SUBFOOT can be used as a complete report request without any display
command if data is embedded in the text, because fields in the text become implicit
display fields.

• You can place page numbers in headings and footings using TABPAGENO (see
Inserting Page Numbers: TABPAGENO on page 9-4).

• Fields in headings and footings are evaluated as if they were verb objects of the first
verb. Fields in subheads and subfoots are evaluated as part of the first verb in which
they are referenced. If a field is not referenced, it is evaluated as part of the last verb.

• Text fields (FORMAT=TXnn) can be embedded in a heading or footing:

• Text field values may display on multiple lines. The output is aligned vertically
so that the position of the field on the initial line is maintained on the following
lines.

• The number of characters in the TX format specification determines the number
of spaces per line for the field in the heading or footing.

• HEADING and FOOTING lines can contain multiple TX fields. SUBHEAD
and SUBFOOT lines can contain at most one.

• You cannot embed TX fields in FML free-text lines.

Customizing Tabular Reports

9-42 Information Builders

Example Using Data in a Heading
For example:

TABLE FILE EMPLOYEE
"<DEPARTMENT>: BANK, EMPLOYEES AND SALARIES </1"
PRINT CURR_SAL
BY DEPARTMENT NOPRINT BY BANK_ACCT
BY LAST_NAME BY FIRST_NAME
ON DEPARTMENT PAGE-BREAK
FOOTING
"<DEPARTMENT EMPLOYEES WITH ELECTRONIC TRANSFER ACCOUNTS"
END

This request produces the following 2-page report:

 Producing Headings and Footings

Creating Reports 9-43

Example Using Data in a SUBFOOT
For example, this request:

TABLE FILE CAR
BY COUNTRY NOPRINT SUBFOOT
"NUMBER OF MODELS IN COUNTRY <COUNTRY = <CNT.MODEL
WITH AVERAGE COST OF <AVE.RCOST "
END

creates this report:

Customizing Tabular Reports

9-44 Information Builders

Example Using Direct Operators in Headings and Footings
You can use any prefix operator in a heading or footing to perform specific operations.
Consider the following examples:

TABLE FILE SALES
"MOST UNITS SOLD WERE <MAX.UNIT_SOLD"
"LEAST UNITS SOLD WERE <MIN.UNIT_SOLD"
"AVERAGE UNITS SOLD WERE <AVE.UNIT_SOLD"
"TOTAL UNITS SOLD WERE <TOT.UNIT_SOLD"
END

and

TABLE FILE EMPLOYEE
"EMPLOYEE NAME <FIRST_NAME <LAST_NAME"
"CURRENT DEPARTMENT <DEPARTMENT"
"JOB TITLE <JOB_DESC"
"**********************************"
"SKILL CATEGORY <SKILLS"
"**********************************"
" "
WHERE EMP_ID IS '112847612'
END

 Producing Headings and Footings

Creating Reports 9-45

and

DEFINE FILE SALES
ACTUAL_SALES/D8.2 = UNIT_SOLD-RETURNS;
%SALES/F5.1 = 100*ACTUAL_SALES/UNIT_SOLD;
END

TABLE FILE SALES
"SUMMARY OF ACTUAL SALES"
"UNITS SOLD <TOT.UNIT_SOLD"
"RETURNS <TOT.RETURNS"
" =============="
"TOTAL SOLD <TOT.ACTUAL_SALES"
" "
"BREAKDOWN BY PRODUCT"
PRINT UNIT_SOLD AND RETURNS AND ACTUAL_SALES
BY PROD_CODE
END

The following shows the beginning of the output:

SUMMARY OF ACTUAL SALES
UNITS SOLD 645
RETURNS 58
 ==============
TOTAL SOLD 587.00

BREAKDOWN BY PRODUCT
PROD_CODE UNIT_SOLD RETURNS ACTUAL_SALES
--------- --------- ------- ------------
B10 60 10 50.00
 30 2 28.00
 13 1 12.00
B12 40 3 37.00

You can use the following special operators only in subheadings and subfootings:

ST.fieldname

Produces a subtotal value of the specified field at a sort break in the report.

CT.fieldname

Produces a cumulative total of the specified field.

Producing a Free-Form Report
Report requests do not have to produce a tabular display, but may consist of only the
heading (as long as the heading has a data field referenced in it). If the request has no
display command but there is a data field embedded in the heading, FOCUS assumes that
this is a heading only request and does not print the body of the report. Any data fields
referenced in the heading will be treated as if they were display fields. Their values at the
time the heading is printed are what they would have been had they been mentioned as in
a display command. Free-form reports are described in detail in Chapter 17, Creating a
Free-Form Report.

Customizing Tabular Reports

9-46 Information Builders

Conditionally Formatting Reports With the WHEN
Clause

Use the WHEN clause in a TABLE request to conditionally display summary lines and
formatting options for BY fields. The expression in the WHEN clause enables you to
control where options such as SUBTOTAL and SUBFOOT appear in the report.

The WHEN clause is an extension of the ON phrase and must follow the ON phrase to
which it applies. One WHEN clause can be specified for each option in the ON phrase.
Multiple WHEN clauses are also permitted.

Used with certain formatting options in a TABLE request, the WHEN clause controls
when those formatting options are displayed. If a WHEN clause is not used, the
formatting options are displayed whenever the sort field value changes.

Syntax How to Create Conditional Formatting
Syntax for the WHEN clause is

ON fieldname option WHEN expression[;]

where:

option

Is any one of the following options for the ON phrase in a TABLE:

RECAP PAGE-BREAK SUBHEAD

RECOMPUTE REPAGE SUBFOOT

SUBTOTAL SKIP-LINE SUB-TOTAL

UNDER-LINE SUMMARIZE

If the WHEN clause is used with SUBHEAD or SUBFOOT, it must be placed on the
line following the text that is enclosed in double quotation marks (see Producing
Headings and Footings on page 9-29).

expression

Is any Boolean expression that would be valid on the right side of a COMPUTE
expression (see Chapter 8, Using Expressions).

Note:

• IF ... THEN ... ELSE logic is not necessary in a WHEN clause and is not supported.

• All non-numeric literals in a WHEN expression must be specified with single
quotation marks.

• The semicolon at the end of a WHEN expression is optional and may be included for
readability.

 Conditionally Formatting Reports With the WHEN Clause

Creating Reports 9-47

Reference Usage Notes for Conditional Formatting
• A separate WHEN clause may be used for each option specified in an ON phrase.

The ON field name phrase needs to be specified only once.

• You can use the WHEN clause to display a different SUBFOOT or SUBHEAD for
each break group.

• The WHEN clause only applies to the option that immediately precedes it.

• If a WHEN clause specifies an aggregated field, the value tested is aggregated only
within the break determined by the field in the corresponding ON phrase.

• In the WHEN clause for a SUBFOOT, the SUBTOTAL is calculated and evaluated.
This applies to fields with prefix operators and to summed fields. For alphanumeric
fields, the last value in the break group is used in the test.

Example Conditionally Formatting Reports
In the following example, the WHEN clause prints a subfoot at the break for the field
STORE_CODE only when the sum of PRODSALES exceeds $500:

DEFINE FILE SALES
PRODSALES/D9.2M = UNIT_SOLD * RETAIL_PRICE;
END

TABLE FILE SALES
SUM PRODSALES
BY STORE_CODE
ON STORE_CODE SUBFOOT
"*** SALES FOR STORE <STORE_CODE EXCEED $500 ****"
WHEN PRODSALES GT 500
END

The report output looks like this:

Customizing Tabular Reports

9-48 Information Builders

Example Selectively Displaying a SUBTOTAL and SUBFOOT
For example, you can print a report that selectively displays a SUBTOTAL and a
SUBFOOT:

TABLE FILE SALES
PRINT UNIT_SOLD RETAIL_PRICE
BY PROD_CODE
ON PROD_CODE SUBTOTAL
WHEN PROD_CODE CONTAINS 'B' First WHEN phrase
SUBFOOT
"PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP"
WHEN PROD_CODE CONTAINS 'C' Second WHEN phrase
END

 Conditionally Formatting Reports With the WHEN Clause

Creating Reports 9-49

Example Selectively Displaying Multiple Subheads
In the following example, a different subhead will be displayed depending on the value of
the BY field. If the value of PROD_CODE contains the literal B, C, or E, the subhead
CURRENT PRODUCT LINE will be displayed. If PROD_CODE contains the literal D,
the subhead DISCONTINUED PRODUCT will be displayed.

TABLE FILE SALES
PRINT UNIT_SOLD RETAIL_PRICE
BY PROD_CODE

ON PROD_CODE
SUBHEAD
"CURRENT PRODUCT LINE"
WHEN PROD_CODE CONTAINS 'B' OR 'C' OR 'E'

SUBHEAD
"DISCONTINUED PRODUCT"
WHEN PROD_CODE CONTAINS 'D'
END

This produces the following report:

Customizing Tabular Reports

9-50 Information Builders

Example Selectively Displaying a Subfoot
In the following example:

ON PROD_CODE SUBTOTAL AND SUBFOOT
"PLEASE CHECK RECORDS FOR THIS PRODUCT GROUP"
WHEN PROD_CODE CONTAINS 'B'

a subtotal will be calculated for each PROD_CODE, but the subfoot will be displayed
only when PROD_CODE contains the literal B.

Example Using Aggregation in the WHEN Clause
For example:

TABLE FILE SALES
SUM UNIT_SOLD
 BY STORE_CODE BY PROD_CODE

ON STORE_CODE SUBFOOT
"SELLING ABOVE QUOTA <ST.UNIT_SOLD "
" "
WHEN UNIT_SOLD GT 100
SUBFOOT
"SELLING AT QUOTA <ST.UNIT_SOLD"
" "
WHEN UNIT_SOLD GE 40 AND UNIT_SOLD LT 100
SUBFOOT
"SELLING BELOW QUOTA <ST.UNIT_SOLD"
" "
WHEN UNIT_SOLD LT 40
END

 Conditionally Formatting Reports With the WHEN Clause

Creating Reports 9-51

This request produces the following report:

Customizing Tabular Reports

9-52 Information Builders

Controlling the Display of Empty Reports
The SET command, SET EMPTYREPORT, enables you to control the output generated
when a TABLE request retrieves zero records.

Syntax How to Control Empty Reports
Use this command:

SET EMPTYREPORT = {ON|OFF}

Valid values are:

ON

Generates an empty report when zero records are found.

OFF

Does not generate a report when zero records are found. OFF is the default setting.

The command may also be issued from a request. For example:

ON TABLE SET EMPTYREPORT ON

Reference Usage Notes for Displaying Empty Reports
• TABLEF is not supported with SET EMPTYREPORT. When a TABLEF request

retrieves zero records, EMPTYREPORT behaves as if EMPTYREPORT is set ON.

• This is a change in default behavior from prior releases of FOCUS. To restore prior
default behavior, issue the SET EMPTYREPORT = ON command.

• SET EMPTYREPORT = OFF is not supported for HOLD FORMAT WP files.

• SET EMPTYREPORT = ON behaves as described regardless of ONLINE or
OFFLINE settings.

Creating Reports 10-1

CHAPTER 10

Styling Reports: StyleSheets

Topics:

• Introduction to StyleSheets

• What Is a StyleSheet?

• Creating a StyleSheet

• Printing Styled Reports

• Styling the Page Layout

• StyleSheet Files

• Identifying Report Components

• StyleSheet Inheritance

• Conditional Styling

With StyleSheets, you can produce visually interesting,
presentation-quality reports that highlight key information. You
can choose the fonts, colors, and text styles for individual report
components, either unconditionally or based on data values and
conditions. You can also move columns anywhere in the report
and control page parameters such as margins, size, and
orientation.

For example, you can make a column title 18 point Times, make
data values in the same column 16 point Helvetica with
different colors for values that satisfy certain conditions, and
you can italicize the column total. You can also move that
column anywhere in the report.

Styling Reports: StyleSheets

10-2 Information Builders

Introduction to StyleSheets
StyleSheets provide numerous options, so you can create extremely detailed formats for
every line, column, or value in your report. This powerful customization and its detailed
syntax makes the process of using StyleSheets seem more complicated than it actually is.
In most cases, you will want to use the formatting facilities judiciously to make important
information stand out. The process of using a StyleSheet consists of the following steps:

1. Decide which StyleSheet to use. If one already exists with the formatting you need,
go on to the next step. FOCUS comes with default styles that you can use if you
want the whole report printed with the same default format. If you want to customize
certain formats in your report, create a StyleSheet that describes those formats.

 Note: If the only attributes you want to change are page layout parameters, you can
change the page parameters with a SET command or in a report request. Styling the
Page Layout on page 10-13 discusses page layout parameters.

2. Activate the StyleSheet you have chosen or create a StyleSheet in a report request.

3. Create a PostScript file that contains the formatted report.

4. Print the report on a PostScript printer. This step is highly dependent on the
equipment and software at your site. See your system administrator for instructions.

 Introduction to StyleSheets

Creating Reports 10-3

The following sample report shows how StyleSheets can enhance the usefulness and
appearance of your reports:

Styling Reports: StyleSheets

10-4 Information Builders

This section describes:

• Basic StyleSheet concepts, and requirements for using StyleSheets (see What Is a
StyleSheet? on page 10-5).

• How to use an existing StyleSheet, either a custom StyleSheet or the default
StyleSheet that is included with FOCUS (see Activating an Existing StyleSheet File
on page 10-11).

• How to print styled reports (see Printing Styled Reports on page 10-12).

• Page layout settings (see Styling the Page Layout on page 10-13).

• Report components (see Identifying Report Components on page 10-21).

• StyleSheet file syntax and instructions for checking a StyleSheet (see StyleSheet File
on page 10-17).

• Style definition syntax (see Style Definition on page 10-19).

• Instructions for selecting a report component, controlling column placement, and
determining inheritance (see Selecting and Manipulating Report Components on
page 10-24).

• Conditional styling with WHEN (see Conditional Styling on page 10-49).

 What Is a StyleSheet?

Creating Reports 10-5

What Is a StyleSheet?
A StyleSheet is a text file that describes how you want your report to look. It consists of a
series of declarations that:

• Identify a report component.

• Describe the desired characteristics of that component.

You can create a StyleSheet using any text editor, including TED, the FOCUS text editor.

If you do not create a StyleSheet, FOCUS uses the same default style for all report
components.

If you create a StyleSheet, you only have to define the styles of those components that
you want printed differently from the default style. Any component that you do not
specifically format in your StyleSheet either uses the default style or inherits a style from
a higher-level component. Inheritance is discussed in StyleSheet Inheritance on page
10-43.

When you use a StyleSheet, your page layout differs from a FOCUS report that does not
use a StyleSheet. This variation is a function of the page layout parameters FOCUS uses
for the two kinds of reports:

• For reports without StyleSheets, FOCUS uses the parameters LINES, PAPER,
PANEL, and WIDTH to define the page layout.

• For reports with StyleSheets, FOCUS uses the parameters PAGESIZE,
ORIENTATION, UNITS, TOPMARGIN, BOTTOMMARGIN, LEFTMARGIN,
RIGHTMARGIN, and SQUEEZE. Any of these parameters that you do not
specifically set—either in a report request, in a StyleSheet, or via a SET command—
inherit default values.

What Is a Style?
A style is a description of the physical characteristics of a report component; it consists
of four attributes:

• A font (typeface) such as Helvetica, Courier, or Times.

• A size for the font such as 12-point or 14-point.

• A text style or combination of text styles such as bold, italic, or bold+italic.

• A color.

Styling Reports: StyleSheets

10-6 Information Builders

When You Need to Create a StyleSheet File
You can take advantage of most StyleSheet options without ever having to create a
StyleSheet file.

You can select a StyleSheet, page size, orientation, and margins at the FOCUS command
level (if you want to apply them to your entire FOCUS session), or in a report request (if
you want to apply them to one report).

You need to create a StyleSheet file if you wish to:

• Style report components individually.

• Apply different styles to the same component based on report values.

Reference Requirements for Printing Styled Reports
To print reports using a StyleSheet file, you need:

• A PostScript printer.

• Adobe Font Metrics (AFM) files that define the measurements of characters for
PostScript output.

AFM files are distributed with FOCUS.

To use a StyleSheet file, FOCUS needs a font location file that maps the font names to
the Font Metric files. If this file is unavailable and you request a StyleSheet, the
following error results:

ERROR AT OR NEAR LINE 19 IN PROCEDURE focexec name FOCEXEC *
(FOC3222) THE FONT LOCATION FILE IS MISSING:

Reports that use StyleSheets can reference a maximum of 128 verb objects. If the report
exceeds 128 verb objects, the following error is produced:

(FOC3228) STYLED REPORTS CURRENTLY LIMITED TO 128 COLUMNS.

Reference Reproducing StyleSheet Examples
The examples presented in this chapter use data from the EMPLOYEE and CAR
databases. In order to reproduce the examples, these sample databases must be loaded on
your machine.

The sample reports use the default page size specification, LETTER, which represents
8.5 x 11 inch pages. They have been scaled down to accommodate the size of this
manual.

If the fonts you have on your system do not include the ones used in the examples,
substitute suitable and available fonts before you run the examples.

 What Is a StyleSheet?

Creating Reports 10-7

Reference Required Files and DDNAMES
When you produce a report using a StyleSheet, you need the following files:

Name Purpose MVS CMS

StyleSheet files. You
can create them with
a text editor (see
StyleSheet File on
page 10-17).

Define the styles
in reports.

Any member of the
PDS allocated to
ddname
FOCSTYLE.

File type
FOCSTYLE, any
file name

Adobe Font Metrics
(AFM) files
(supplied with
FOCUS).

Define the
measurements of
characters for
PostScript output.

Member names
start with PS.
Allocated to
ddname ERRORS.

File type AFM,
any file name

Font location file
(supplied with
FOCUS).

Maps font names
to the Font
Metrics files.

Member PSCRIPT
in the PDS
allocated to
ddname ERRORS.

File name
PSCRIPT, File
type FOCFTMAP

PostScript output
files. You create
these with a HOLD,
SAVE, or SET
command (see
Printing Styled
Reports on page
10-12).

Contain the
formatted output
for the PostScript
printer.

Any member of the
variable length
PDS allocated to
ddname PS.

File type PS, any
file name

Comparison of Reports With and Without StyleSheets
In a non-styled FOCUS report request, you can set values for the maximum number of
lines on the output page (LINES), the number of lines on the printed page (PAPER), the
maximum number of characters in a report panel (PANEL), and the maximum number of
characters on an output line (WIDTH). FOCUS then uses the typeface and size defined
by your printer setup for all data in the report.

In a styled report, you can set margins on the top, bottom and sides of the report, you can
set the page size for letters, envelopes, and many other types of paper, you can specify
measurement units such as inches or points, and you can control column widths or
spacing. You can also change typefaces, type size, and type style for any part of the
report.

Styling Reports: StyleSheets

10-8 Information Builders

The following table compares what you can do with and without StyleSheets:

 With StyleSheets Without StyleSheets

Text font You can use different font sizes
and fonts. You can selectively
apply text styles such as bold or
italics.

FOCUS uses the default font
specified in your printer setup
for the entire report.

Colors You can select a color for the
text.

The ink and paper in your
printer determine the colors in
your report.

Individual
components

You can assign different styles
to individual report components.

FOCUS uses a single style for
the entire report.

Conditional
styling

You can apply different styles to
the same component based on
report values.

Report format does not change
with changes in report values.

Column widths You can have column widths
based on the column content,
the field format specified in the
Master File, or specify a width.

FOCUS bases column widths
on the column title or the field
format specified either in the
Master File or the report
request.

Column
placement

You can specify the starting
position of individual columns
and arrange columns in any
order regardless of the sequence
established in the report request.
In addition, you can indicate
how much space to leave before
and after individual columns.

You can specify the starting
position of individual columns
in the report request.

Page size You can select from a wide
range of page sizes.

You can specify the number of
lines per page and characters
per line within the limits of
your printer setup.

Page
orientation

You can select either portrait or
landscape.

FOCUS uses the default
orientation specified in your
printer setup.

Page margins You can specify the top, bottom,
left, and right margins,
measured in inches, centimeters,
or points.

FOCUS uses the default page
margins specified in your
printer setup.

 Creating a StyleSheet

Creating Reports 10-9

Creating a StyleSheet
There are two ways to create a StyleSheet:

• You can create a StyleSheet file in a report request. This is useful when you are
applying that set of styles to only one report. See Creating a StyleSheet Within a
Report Request on page 10-9.

• You can create a separate StyleSheet file. In order to use a StyleSheet file, you must
activate it. This option is useful when you want to create a StyleSheet template that
you can apply to any report. In addition, you can create a StyleSheet on one platform
and then port it to and run it on other platforms. See Activating an Existing
StyleSheet File on page 10-11.

Creating a StyleSheet Within a Report Request
You can create a StyleSheet file within your report request. This method enables you to
create and maintain the styles for your report directly in the report request.

Syntax How to Create a StyleSheet in a Report Request
ON TABLE SET STYLE *
.
.
.
ENDSTYLE

where:

STYLE *

Indicates the beginning of an inline StyleSheet.

ENDSTYLE

Indicates the end of an inline StyleSheet.

Note: You can omit the keyword ENDSTYLE, but only if it is immediately followed
by the keyword END in the report request.

Styling Reports: StyleSheets

10-10 Information Builders

Example Creating a StyleSheet Within a Report Request
In the following report request, the StyleSheet syntax appears in bold.

TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME
BY DEPARTMENT
ON TABLE HOLD FORMAT PS
ON TABLE SET STYLE *
TYPE=REPORT, FONT=TIMES, SIZE=10, $
TYPE=REPORT, COLUMN=EMP_ID, RIGHTGAP=1, $
ENDSTYLE
END

The request produces the following report:

 Creating a StyleSheet

Creating Reports 10-11

Activating an Existing StyleSheet File
The STYLESHEET parameter setting determines whether a report uses a custom
StyleSheet. It also determines which page layout parameters are activated.

You can specify the STYLESHEET setting with a SET command if you want the setting
to apply to your entire FOCUS session, or in a report request if you want the setting to
apply to just that report.

Syntax How to Activate an Existing StyleSheet File
The syntax for the SET command is

SET STYLE[SHEET] = styoption

and the syntax in a report request is

TABLE FILE file
 request
ON TABLE SET STYLE styoption
END

where:

styoption

Is one of the following options:

ON uses default styles. This is the default setting. With this setting in effect, FOCUS
uses the page layout settings for UNITS, TOPMARGIN, BOTTOMMARGIN,
LEFTMARGIN, RIGHTMARGIN, PAGESIZE, ORIENTATION, and SQUEEZE,
and FOCUS ignores the settings for LINES, PAPER, PANEL, and WIDTH.

OFF uses default styles. In this case, FOCUS uses the settings for LINES, PAPER,
PANEL, and WIDTH, and it ignores the settings for UNITS, BOTTOMMARGIN,
LEFTMARGIN, RIGHTMARGIN, TOPMARGIN, PAGESIZE, ORIENTATION,
and SQUEEZE. The report is printed in fixed-width Courier typeface with .250-inch
margins. You can use this setting to print traditional-looking FOCUS reports on
PostScript printers.

Note: To disable StyleSheets entirely so that no StyleSheet is activated, use the
ONLINE-FMT setting discussed in Printing Styled Reports on page 10-12.

stysheet is the eight-character name of a StyleSheet file. This setting activates the
named StyleSheet. FOCUS uses the page layout settings for UNITS, TOPMARGIN,
BOTTOMMARGIN, LEFTMARGIN, RIGHTMARGIN, PAGESIZE,
ORIENTATION, and SQUEEZE, and FOCUS ignores the settings for LINES,
PAPER, PANEL, and WIDTH.

Page layout settings are discussed in Styling the Page Layout on page 10-13, and custom
StyleSheets are described in StyleSheet File on page 10-17.

Styling Reports: StyleSheets

10-12 Information Builders

Printing Styled Reports
In order to print a report that was formatted using a StyleSheet, you must generate a
PostScript file containing the formatted report. You must then print this file on a
PostScript printer. When you view the report on your screen, you do not see the special
formatting unless you have a PostScript viewer that can produce the formats on-line.

Syntax How to Print Styled Reports
You can generate StyleSheet report output in either of two ways:

• Create a HOLD or SAVE file containing the report output in PostScript format. You
can issue the HOLD or SAVE command either from the FOCUS command line or in
a TABLE request. The syntax is

[ON TABLE] {HOLD|SAVE} FORMAT {PS|POSTSCRIPT} [AS filename]

where:

filename

Assigns a 1- to 8-character file name or ddname to the report saved in PostScript
format. The default file name is HOLD. If a PDS is allocated to ddname PS, the
output file becomes member filename in that PDS; otherwise, the output goes to
a temporary sequential data set allocated to ddname filename.

POSTSCRIPT|PS

Stores the report output in a PostScript file.

• Issue the following command to select a printer driver

SET ONLINE-FMT = {STANDARD|POSTSCRIPT}

where:

STANDARD

Is the default. It overrides the STYLESHEET setting and simulates standard
FOCUS formatting.

POSTSCRIPT

Stores the report output in a PostScript file named PSOUT. It respects the
STYLESHEET setting. PS is a synonym for POSTSCRIPT.

When you generate stylized report output that is too wide to fit in the defined print area
of a single page, StyleSheet formatting divides the output across multiple pages or
panels. The pages are automatically numbered with decimal notation indicating the panel
number (1.1, 1.2, and so on).

Prior to generating the stylized output, FOCUS displays a FOC3218 information message
indicating the total width of the report and that the resulting report output spans multiple
pages.

 Styling the Page Layout

Creating Reports 10-13

Styling the Page Layout
When a StyleSheet is activated, FOCUS uses page parameters to format the page layout.
These parameters have default values that remain in effect unless you change them in one
of three ways:

• With a SET command that you issue at the FOCUS command line. Your settings
remain in effect for the entire FOCUS session, unless you change them. The syntax
is:

SET parameter=value [,...,parameter=value]

• With an ON TABLE phrase in a report request. These settings are in effect for the
duration of the request and override values specified at the command line. The
syntax is:

TABLE FILE file
 request
ON TABLE SET parameter value [,..., parameter value]
END

• In a StyleSheet. These settings are in effect whenever you activate the StyleSheet.
The values specified in an activated StyleSheet override values specified at the
command line or in a report request. The syntax is:

[TYPE=REPORT] [parameter=value ,..., parameter=value]

StyleSheet file declarations are discussed more fully in StyleSheet File on page
10-17.

Styling Reports: StyleSheets

10-14 Information Builders

The parameters and values for styling a page layout are listed in the following chart:

Parameter
Name
(Default
Value)

Description Possible Values

ORIENTATION

(PORTRAIT)

Specifies whether the
report pages are long
or wide.

PORTRAIT

LANDSCAPE

UNITS

(INCHES)

Specifies the
measurement unit for
margins, gaps, and
column widths.

INCHES

CM (centimeters)

PTS (points; one inch = 72 points; one
cm = 28.35 points.)

Note: If you change the UNITS setting,
FOCUS preserves the margins by
converting the numbers to the new
measurement unit. For example, if a
margin is 1 inch and you change the
UNITS to CM, FOCUS converts the
margin to 2.54 cm (the equivalent of 1
inch).

TOPMARGIN

(0.25 inch)
Sets the top boundary
of report contents on a
page.

The desired margin value in the
measurement unit specified by the UNITS
parameter. Margins are measured from the
edge of the physical page defined by the
PAGESIZE parameter. They must account
for the printable area of a page.

BOTTOMMARGIN

(0.25 inch)
Sets the bottom
boundary of report
contents on a page.

The desired margin value in the
measurement unit specified by the UNITS
parameter. Margins are measured from the
edge of the physical page defined by the
PAGESIZE parameter. They must account
for the printable area of a page.

 Styling the Page Layout

Creating Reports 10-15

Parameter
Name
(Default
Value)

Description Possible Values

LEFTMARGIN

(0.25 inch)
Sets the left boundary
of report contents on a
page.

The desired margin value in the
measurement unit specified by the UNITS
parameter. Margins are measured from the
edge of the physical page defined by the
PAGESIZE parameter. They must account
for the printable area of a page.

RIGHTMARGIN

(0.25 inch)
Sets the right boundary
of report contents on a
page.

The desired margin value in the
measurement unit specified by the UNITS
parameter. Margins are measured from the
edge of the physical page defined by the
PAGESIZE parameter. They must account
for the printable area of a page.

SQUEEZE

(ON)

Determines how
column widths are
assigned.

ON

Column widths are the larger of the
widest data value or the column title.

OFF

Column widths are the larger of the
column title or the field format in the
Master File.

n

Is the actual width in UNITS. This
setting is available only within a
StyleSheet. If the width cannot
accommodate the value, FOCUS
displays the part that fits and indicates
that the value is truncated with an
exclamation point (!) for
alphanumeric data or an asterisk (*)
for numeric data.

Styling Reports: StyleSheets

10-16 Information Builders

Parameter
Name
(Default
Value)

Description Possible Values

PAGESIZE

(LETTER)

Specifies the page size.

Note: If the actual
paper size does not
match the PAGESIZE
setting, your report will
either be cropped or
contain extra blank
space.

Value

LETTER

TABLOID

LEDGER

LEGAL

STATEMENT

EXECUTIVE

A3

A4

A5

B4

B5

FOLIO

QUARTO

10X14

ENVELOPE-9

ENVELOPE-10

ENVELOPE-11

ENVELOPE-12

ENVELOPE-14

C

D

E

ENVELOPE-DL

ENVELOPE-C3

ENVELOPE-C4

ENVELOPE-C5

ENVELOPE-C6

ENVELOPE-C65

ENVELOPE-B4

ENVELOPE-B5

ENVELOPE-B6

ENVELOPE-ITALY

ENVELOPE-MONARCH

ENVELOPE-PERSONAL

US-STANDARD-FANFOLD

GERMAN-STANDARD-FANFOLD

GERMAN-LEGAL-FANFOLD

Dimensions

8.5 x 11 in
11 x 17 in
17 x 11 in
8.5 x 14 in
5.5 x 8.5 in
7.5 x 10.5 in
297 x 420 mm
210 x 297 mm
148 x 210 mm
250 x 354 mm
182 x 257 mm
8.5 x 13 in
215 x 275 mm
10 x 14 in
3.875 x 8.875 in
4.125 x 9.5 in
4.5 x 10.375 in
4.5 x 11 in
5 x 11.5 in
17 x 22 in
22 x 34 in
34 x 44 in
110 x 220 mm
324 x 458 mm
229 x 324 mm
162 x 229 mm
114 x 162 mm
114 x 229 mm
250 x 353 mm
176 x 250 mm
176 x 125 mm
110 x 230 mm
3.875 x 7.5 in
3.625 x 6.5 in
14.875 x 11 in
8.5 x 12 in
8.5 x 13 in

 StyleSheet Files

Creating Reports 10-17

Displaying Current Settings: The ? STYLE Query
Use the ? STYLE query to display the current settings for the STYLESHEET parameter
and all page parameters.

Syntax How to Display Current Settings
The syntax is:

? STYLE

For example:

>
? style
 ONLINE-FMT STANDARD
 OFFLINE-FMT STANDARD

 STYLESHEET: ON

 SQUEEZE OFF
 PAGESIZE LETTER
 ORIENTATION PORTRAIT
 UNITS INCHES
 LEFTMARGIN .250
 RIGHTMARGIN .250
 TOPMARGIN .250
 BOTTOMMARGIN .250

Note: OFFLINE-FMT is reserved for future use.

StyleSheet Files
StyleSheet files consists of a series of declarations that describe how you want your
report to look. Each declaration:

• Identifies a report component or subcomponent.

• Describes the formatting to apply to that component.

• Optionally, if the component is a heading, footing, or column, specifies a position on
the page for the component.

• Optionally, specifies the distance between columns, column sequence, and column
width.

• Optionally, specifies a condition that must be true in order to apply the style. This
technique is called stoplighting or conditional styling.

In your StyleSheet files, include declarations for only those components whose format
you want to change. Within each declaration, include only those formatting attributes that
you want to change.

Styling Reports: StyleSheets

10-18 Information Builders

StyleSheet Syntax
Each declaration in a StyleSheet file consists of attribute=value pairs separated by
commas and terminated with a comma and dollar sign (,$). The attributes that select a
component or subcomponent must come first in each declaration. You can specify all
other attributes in any order. The syntax is:

TYPE=value1, attribute2=value2, ... ,$

Note:

• You can use uppercase, lowercase, or mixed-case in the StyleSheet file.

• Page layout parameters automatically apply to the whole report. Therefore,
declarations that set page parameters do not require a TYPE attribute. For example,
the following declarations are equivalent:

TYPE=REPORT, ORIENTATION=LANDSCAPE ,$

ORIENTATION=LANDSCAPE,$

See Styling the Page Layout on page 10-13 for a complete description of page
parameters.

• Each declaration must begin on a new line.

• A declaration can use more than one line. The terminating dollar sign indicates
where the declaration ends.

• You can describe a single report element in more than one declaration.

• You can include blank spaces between the attributes, values, equal signs (=),
commas, and dollar sign. You can also include blank lines. FOCUS can interpret
declarations with or without blank spaces or lines.

• You can include comments, either on a declaration line after the terminating dollar
sign, or on a separate comment line that begins with a dollar sign.

The attributes in the StyleSheet file identify report components, manipulate them, and
define styles for formatting them. Style Definition on page 10-19 discusses the style
definition, Selecting and Manipulating Report Components on page 10-24 describes how
to select and manipulate report components, and Conditional Styling on page 10-49
describes conditional styling.

 StyleSheet Files

Creating Reports 10-19

Checking StyleSheet Syntax
You can check the syntax of a StyleSheet from the FOCUS prompt with the CHECK
STYLE command.

Syntax How to Check StyleSheet Syntax
CHECK STYLE filename

where:

filename

Is the name of the StyleSheet file.

FOCUS reports any syntax errors in the StyleSheet file. It does not check whether the
specified fonts are available or whether the font names are spelled correctly.

Style Definitions
Style definitions consists of four attributes, separated by commas, that you can specify in
any order. Any attribute that you omit from the definition retains its current setting. The
four attributes are

FONT= {font|COURIER} ,SIZE= {n|12} ,COLOR= {color|BLACK} ,

STYLE= {[±]style [± style]|NORMAL}

where:

font

Is the typeface to apply. A typeface is a set of letters, numbers, and punctuation
marks of a given design. COURIER is the default. Other fonts available in the font
metrics files supplied with FOCUS are HELVETICA, Avant Garde Gothic,
BOOKMAN, HELVETICA NARROW, NEW CENTURY SCHOOLBOOK,
PALATINO, and TIMES.

You can apply fonts to all report components except underlines and skipped lines.

Embedded blanks are allowed. You can use single quotation marks for text that
contains commas or where case is significant.

n

Is a positive integer. Text sizes are measured in points; the smaller the number, the
smaller the type. The default size is 12 points.

color

Is one of the following: BLACK, WHITE, GREEN, RED, BLUE, MAROON,
OLIVE, PURPLE, NAVY, YELLOW, TEAL, GRAY, SILVER, LIME, FUCHSIA,
AQUA. The default is BLACK.

You can apply colors to all report components, except skipped lines. When colors
are not available, most printers use shades of gray.

Styling Reports: StyleSheets

10-20 Information Builders

style

Is one of the following text styles:

NORMAL sets text styles to the original typeface design for the font being used. This is
the default.

BOLD intensifies characters, makes them darker.

ITALIC slants characters and may make them more script-like.

OUTLINE prints only the outline of characters.

UNDERLINE prints a line under characters.

+

Combines two or more text styles, or adds a characteristic to the existing style. For
example, the following adds italics to the existing style:

STYLE = +ITALIC

The following specifies bold and italics together:

STYLE = BOLD+ITALIC

-

Removes a characteristic from the existing style. For example, the following
removes italics from the inherited style:

STYLE = -ITALIC

 Identifying Report Components

Creating Reports 10-21

Identifying Report Components
The basic concept behind StyleSheets is that a report consists of several components,
each of which has a specific name. A StyleSheet file consists of style declarations for
those components whose styles you want to change, along with the formatting that you
want to apply to those components. Any component that you do not specifically format
in your StyleSheet either retains the default style or inherits a style from a higher-level
component. Inheritance is discussed in StyleSheet Inheritance on page 10-43.

In a StyleSheet, you identify a report component with the TYPE attribute. The following
chart lists all report components:

TYPE Report Component

REPORT The entire report.

PAGENUM Default page numbers.

Note: Styles created for page number lines do not apply to page
numbers created by the TABPAGENO variable in TABLE requests.
You can format TABPAGENO page numbers by defining a style for
the heading or footing that contains it.

TABHEADING A heading on the first page of a report, generated by ON TABLE
SUBHEAD.

TABFOOTING A footing on or after the last page of a report, generated by ON
TABLE SUBFOOT.

HEADING Headings at the top of each report page.

FOOTING Footings at the bottom of each report page.

SUBHEAD Headings before a particular sort field, generated by ON sortfield
SUBHEAD.

SUBFOOT Footings after a particular sort field, generated by ON sortfield
SUBFOOT.

DATA Report data.

TITLE Column titles.

ACROSSTITLE ACROSS field names (that is, field names used in ACROSS
phrases).

ACROSSVALUE ACROSS field values (that is, values of the ACROSS field). These
values become column titles in the report.

Styling Reports: StyleSheets

10-22 Information Builders

TYPE Report Component

SUBTOTAL Totals generated by SUBTOTAL, SUB-TOTAL, RECOMPUTE,
and SUMMARIZE.

GRANDTOTAL The last total on a report, which can either be a column total
generated by COLUMN-TOTAL or a grand total generated by
SUBTOTAL, SUB-TOTAL, RECOMPUTE, or SUMMARIZE.

RECAP Lines generated by ON field name RECAP or ON field name
COMPUTE.

UNDERLINE Underlines generated by ON field name UNDER-LINE.

SKIPLINE Skipped lines generated by ON field name SKIP-LINE.

Selecting and Manipulating Report Components on page 10-24 contains annotated report
output that illustrates most components.

Within certain components, you can select specific subcomponents. For example, within
a heading, you can isolate a particular line or a particular field. You identify
subcomponents with selection attributes (also called qualifiers). The following chart lists
the attributes you can use to select a subcomponent:

Attribute Use with TYPE: Selects:

COLUMN REPORT

TITLE

ACROSSVALUE

DATA

SUBTOTAL

GRANDTOTAL

One or more columns. You can identify a
column by its type and/or position within the
report or by its field name.

ACROSSCOLUMN REPORT

TITLE

DATA

SUBTOTAL

GRANDTOTAL

One or more columns within ACROSS groups.
You can identify an ACROSSCOLUMN by its
position in its ACROSS groups or by its field
name.

ACROSS ACROSSTITLE

ACROSSVALUE

An ACROSS field. You can identify an
ACROSS field by its position in the set of
ACROSS phrases in the report request or by its
field name.

BY SUBTOTAL

RECAP

SUBHEAD

SUBFOOT

A subtotal line for the selected BY field. You
can identify a BY field by its position in the
report or by its field name.

 Identifying Report Components

Creating Reports 10-23

Attribute Use with TYPE: Selects:

LINE TABHEADING

TABFOOTING

HEADING

FOOTING

SUBHEAD

SUBFOOT

A line in any multi-line heading or footing.
Blank and skipped lines count. You identify a
line by its line number within its particular
heading, footing, subheading, or subfooting.

OBJECT TABHEADING

TABFOOTING

HEADING

FOOTING

SUBHEAD

SUBFOOT

Either text phrases (OBJECT=TEXT) or fields
(OBJECT=FIELD) in any heading or footing.
You can qualify this value with a LINE and/or
ITEM attribute.

ITEM TABHEADING

TABFOOTING

HEADING

FOOTING

SUBHEAD

SUBFOOT

A particular text phrase or field in a heading or
footing. You identify a phrase or field by its
position on its line in the heading or footing.
You can use the LINE and/or OBJECT
attributes to select a specific text phrase or field
on a specific line.

For example, to choose the third column for the entire report, use the parameters:

• TYPE=REPORT

• COLUMN=3

Complete syntax definitions and examples are included in Selecting and Manipulating
Report Components on page 10-24.

Styling Reports: StyleSheets

10-24 Information Builders

Selecting and Manipulating Report Components
This section describes how you select a specific component or subcomponent. It also
explains how to position and manipulate columns and how to determine inheritance
based on the StyleSheet hierarchy.

Syntax How to Select the Entire Report
To select the entire report, use the syntax:

TYPE = REPORT

Syntax How to Select Page Numbers
To select the default page numbers FOCUS supplies, use the syntax:

TYPE = PAGENUM

Note: Page numbers created by the TABPAGENO variable in a TABLE request are a
subcomponent of the heading or footing that contains them. You can select these page
numbers by selecting the heading or footing (see Selecting Headings and Footings on
page 10-28).

Syntax How to Select Underlines
The only style attribute you can vary for an underline is the color. To select underlines
for formatting, use the syntax:

TYPE = UNDERLINE

Syntax How to Select Skipped Lines
You can change the size (in points) of skipped lines. To select them for formatting, use
the syntax:

TYPE = SKIPLINE

Syntax How to Select Report Data
To select the data values printed in the report, the syntax is:

TYPE = DATA

You can also select data in specific columns. See Selecting Report Columns on page
10-34 for details.

 Identifying Report Components

Creating Reports 10-25

Syntax How to Select Column Titles
StyleSheet declarations can distinguish between three types of column titles:

TYPE Definition

TITLE This title is generated by a display command; for example, the
following command displays a column titled COUNTRY:

PRINT COUNTRY

ACROSSTITLE This title consists of the field name from an ACROSS phrase in
the request; for example, the following phrase displays an
ACROSS group titled COUNTRY:

ACROSS COUNTRY

ACROSSVALUE This title consists of one of the values of a field referenced in an
ACROSS phrase; for example, the phrase ACROSS COUNTRY
displays a column titled:

LONDON

The following request demonstrates each type of title. The numbers on the left refer to
the annotated report output that follows the request:

 TABLE FILE EMPLOYEE
1. SUM GROSS DED_AMT
2. ACROSS DEPARTMENT
1. BY HIGHEST PAY_DATE AS 'PAY DATE'
 WHERE PAY_DATE FROM 820131 TO 821231
 END

The numbers on the report output indicate which statements in the request produced each
type of title:

PAGE 1

 DEPARTMENT

 MIS PRODUCTION

PAY_DATE GROSS DED_AMT GROSS DED_AMT

82/08/31 $9,000.00 $4,575.76 $9,523.84 $4,911.14
82/07/30 $7,460.00 $4,117.07 $7,048.84 $3,483.89
82/06/30 $7,460.00 $4,117.07 $7,048.84 $3,483.89
82/05/28 $6,649.51 $3,954.39 $7,048.84 $3,483.89
82/04/30 $5,890.84 $3,386.76 $4,959.84 $2,061.70
82/03/31 $3,247.75 $1,740.88 $4,959.84 $2,061.70
82/02/26 $3,247.75 $1,740.88 $4,959.84 $2,061.70

2. TYPE=ACROSSVALUE
2. TYPE=ACROSSTITLE

1. TYPE=TITLE

To select a type of title to format, use one of the following:

TYPE = TITLE
TYPE = ACROSSTITLE
TYPE = ACROSSVALUE

You can also select titles in specific columns. See Selecting Report Columns on page
10-34 for details.

Styling Reports: StyleSheets

10-26 Information Builders

Syntax How to Select Column Totals
StyleSheet declarations can distinguish between three types of totals:

TYPE Definition

GRANDTOTAL The last total displayed in a report.

SUBTOTAL Column totals or subtotals.

RECAP Totals generated by RECAP or ON field COMPUTE
calculations.

The following request demonstrates each type of total. The numbers on the left refer to
the annotated report output that follows the request:

TABLE FILE EMPLOYEE
 SUM GROSS DED_AMT AND
 COMPUTE DG_RATIO/F4.2=DED_AMT/GROSS; AS 'RATIO'
 BY DEPARTMENT
 BY PAY_DATE
1. ON DEPARTMENT RECOMPUTE UNDER-LINE
2. ON DEPARTMENT RECAP DEPT_NET/D8.2M=GROSS-DED_AMT;
3. ON TABLE COLUMN-TOTAL
 WHERE PAY_DATE FROM 820101 TO 820301
 END

The numbers on the report output indicate which statements in the request produced each
type of total:

1. TYPE=SUBTOTAL
2. TYPE=RECAP

2. TYPE=RECAP

3. TYPE=GRANDTOTAL

1. TYPE=SUBTOTAL

 Identifying Report Components

Creating Reports 10-27

To select a type of total to format, the syntax is:

TYPE = tottype

where:

tottype

Can be SUBTOTAL, RECAP or GRANDTOTAL.

You can select a specific subtotal or recap line by identifying the sort field that generated
it. The syntax is

TYPE = {SUBTOTAL|RECAP} [,BY = {Bn|fieldname}]

where:

Bn

Identifies a BY field by its position in the report; n is a positive integer that counts
all BY fields in the report from left to right, including NOPRINT BY fields.

fieldname

Identifies a BY field by its field name.

If a field appears in the report more than once, fieldname(n) selects the nth
occurrence, and fieldname(*) selects all occurrences of the field.

You can also select totals in specific columns. See Selecting Report Columns on page
10-34 for details.

Styling Reports: StyleSheets

10-28 Information Builders

Selecting Headings and Footings
StyleSheet declarations can select the following types of headings and footings:

TYPE Definition

TABHEADING The report heading.

TABFOOTING The report footing.

HEADING The page heading.

FOOTING The page footing.

SUBHEAD A sort heading.

SUBFOOT A sort footing.

The following request demonstrates most of the heading and footing report components.
The numbers on the left refer to the annotated report output that follows the request:

 TABLE FILE EMPLOYEE
1. ON TABLE SUBHEAD
1. "CONFIDENTIAL INFORMATION"
1. "SWIFTY INFORMATION GROUP - EMPLOYEE LIST BY DEPARTMENT </1"
2. HEADING CENTER
2. "EMPLOYEES FOR DEPARTMENT: <DEPARTMENT </1"
 PRINT CURR_SAL HIRE_DATE
 BY DEPARTMENT NOPRINT
3. BY JOB_DESC NOPRINT SUBHEAD
3. "</1 <JOB_DESC ..."
 BY LAST_NAME
4. BY FIRST_NAME SUBFOOT
4. "** REVIEW SALARY FOR <FIRST <LAST"
 WHEN CURR_SAL LT 18000
 WHERE RECORDLIMIT EQ 3
 END

The numbers on the report output indicate which statements in the request produced each
type of heading or footing:

1. TYPE=TABHEADING

3. TYPE=SUBHEAD

1. TYPE=PAGENUM

4. TYPE=SUBFOOT

2. TYPE=HEADING

3. TYPE=SUBHEAD

 Identifying Report Components

Creating Reports 10-29

Syntax How to Select Headings and Footings
The following syntax selects a type of heading or footing:

TYPE = headtype

where:

headtype

Can be one of the following: TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD or SUBFOOT.

You can select a specific SUBHEAD or SUBFOOT by identifying the sort field that
generated it. The syntax is

TYPE = {SUBHEAD|SUBFOOT} [,BY = {Bn|fieldname}]

where:

Bn

Identifies a BY field by its position in the report; n is a positive integer that counts
all BY fields in the report from left to right, including NOPRINT BY fields.

fieldname

Identifies a BY field by its field name.

If a field appears in the report more than once, fieldname(n) selects the nth
occurrence, and fieldname(*) selects all occurrences of the field.

In addition to the heading or footing text, headings and footings can include database
fields, DEFINE fields, and page numbers created by the TABPAGENO field. You can
select specific elements of a heading or footing with the following selection attributes
(qualifiers):

Attribute Definition

LINE Selects a particular line in a multi-line heading or footing.

OBJECT Selects a type of subcomponent: text phrases or embedded fields.

ITEM Selects a particular text phrase or field.

Styling Reports: StyleSheets

10-30 Information Builders

The syntax for selecting a subcomponent of a heading or footing is

TYPE = {headtype [BY={Bn|fieldname}][LINE=n][,OBJECT={TEXT|FIELD}][ITEM=m]

where:

headtype

Can be one of the following: TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD or SUBFOOT.

n

Selects a specific line within a multi-line heading or footing, counting blank lines
specified by “ “ and lines skipped with </n. For example:

 HEADING
1. "The <CAR <MODEL is made in <COUNTRY and"
2. "sells for $<RCOST (as of &DATE)."
3. " "
4. "Number of seats: <SEATS"

TEXT|FIELD

Selects either the text phrases or the embedded fields in a heading or footing. FIELD
selects only data source fields and DEFINE fields, not amper variables. For example,
in the following HEADING phrase, &DATE is TEXT; DEPT is a FIELD:

HEADING CENTER
"Report created on &DATE for <DEPT"

You can use the OBJECT attribute with LINE and/or ITEM attributes to select
specific text phrases or fields.

Note: Spot markers split headings and footings into multiple parts. You can
deliberately split headings and footings using <+0>.

m

Selects a part of a heading or footing by its position in the heading or footing:

• If used without an OBJECT attribute, ITEM counts all text phrases and fields,
starting from 1 on each line. The following selects the second item on the line,
regardless of whether that item is a text phrase or a field:

ITEM=2

• In a heading or footing with multiple text phrases, you can select a specific
phrase. Count text phrases from left to right starting from 1 on each line. Text
phrases are delimited by embedded fields or spot markers. The following selects
the third text phrase:

ITEM=3, OBJECT=TEXT

• In a heading or footing with multiple fields, you can select a specific field.
Count fields from left to right starting from 1 on each line. The following selects
the second field:

ITEM=2, OBJECT=FIELD

 Identifying Report Components

Creating Reports 10-31

• If the whole heading or footing is text with no embedded fields, the text counts
as one item. You can break it into multiple items with spot markers. Consider
the following HEADING phrase:

HEADING
"Report Created on <+0 &DATE <+0 for <DEPT"

You can select the amper variable, &DATE, with

ITEM=2, OBJECT=TEXT

BY

Is described Selecting Headings and Footings on page 10-28.

The following table illustrates selection attributes:

Attribute Definition

OBJECT=TEXT Selects all text in a heading or footing for formatting. Use
the OBJECT=TEXT attribute by itself if you want all text
phrases in a heading or footing to have the same style.

OBJECT=FIELD Selects all embedded fields in a heading or footing for
formatting. Use the OBJECT=FIELD attribute by itself if
you want all fields in a heading or footing to have the same
style.

OBJECT=TEXT, ITEM=n Selects a specific text phrase for formatting. Text phrases
are counted from left to right in a heading or footing line.

OBJECT=FIELD, ITEM=n Selects a specific field for formatting. Fields are counted
from left to right in a heading or footing line.

LINE=n, OBJECT=TEXT Selects all text phrases on a specified heading or footing
line.

LINE=n, OBJECT=FIELD Selects all embedded fields on a specified heading or
footing line.

LINE=n, ITEM=m Selects the mth item on the nth line of a heading or footing,
regardless of whether this item is a text phrase or an
embedded field.

LINE=n, OBJECT=TEXT,

ITEM=m

Selects the mth text phrase on the nth line of a heading or
footing.

LINE=n,

OBJECT=FIELD, ITEM=m

Selects the mth field on the nth line of a heading or footing.

The key to defining styles for subcomponents within a report heading or footing is
knowing how to count the lines, text phrases, and fields within a heading or footing.

Styling Reports: StyleSheets

10-32 Information Builders

Example Styling Heading and Footing Subcomponents
This example illustrates how to count and build styles for one or more lines, fields, and
text phrases in a heading or footing:

 TABLE FILE CAR
 HEADING
1. "The <CAR <MODEL is made in <COUNTRY and"
2. "sells for $<RETAIL_COST (as of &DATE)."
 " "
3. "Number of Seats: <SEATS Weight: <WEIGHT "
 " "
 " "
 PRINT BODYTYPE NOPRINT
 FOOTING
4. "Supplied by"
 " "
 " The National Automobile Statistics Organization"
 " "
 WHERE COUNTRY EQ 'ENGLAND';
 ON TABLE SET STYLE HEAD
 ON TABLE HOLD AS HEAD FORMAT PS
 END

1. The first line of the report heading consists of three embedded fields (CAR,
MODEL, and COUNTRY), and three text phrases (‘The ’, ‘ is made in ’, and ‘ and’).

The following declaration defines a style for all embedded fields in the first line:

TYPE=HEADING, LINE=1, OBJECT=FIELD, FONT=TIMES, SIZE=16,
STYLE=NORMAL, COLOR=BLACK ,$

The next declaration defines a style for the second field, MODEL, in the first line:

TYPE=HEADING, LINE=1, OBJECT=FIELD, ITEM=2, FONT=TIMES,
SIZE=10,STYLE=BOLD, COLOR=BLACK,$

2. The second line of the report heading consists of one field (RETAIL_COST), and
two text phrases (‘sells for $’ and ‘ (as of &DATE). ’).

The following declaration defines a style for the field RETAIL_COST:

TYPE=HEADING, LINE=2, OBJECT=FIELD, FONT=TIMES, SIZE=10, STYLE=BOLD,
COLOR=BLACK,$

The next declaration defines a style for the two text phrases:

TYPE=HEADING, LINE=2, OBJECT=TEXT, FONT=TIMES, SIZE=10, STYLE=ITALIC,
COLOR=BLACK,$

The following declaration defines a style for the second text phrase (‘(as of
&DATE).’):

TYPE=HEADING, LINE=2, OBJECT=TEXT, ITEM=2, FONT=TIMES, SIZE=10,STYLE=
UNDERLINE, COLOR=BLACK,$

 Identifying Report Components

Creating Reports 10-33

3. This is the fourth line of the report heading, because “ “ in the previous line of the
heading specifies a blank line, and blank lines count. It consists of two fields
(SEATS and WEIGHT) and two text phrases (‘Number of Seats:’ and ‘Weight:’).

The following declaration defines a style for the first field, SEATS:

TYPE=HEADING, LINE=4, OBJECT=FIELD, ITEM=1, FONT=HELVETICA,
SIZE=10,STYLE=NORMAL,$

This declaration enhances the word ‘Weight:’ in the fourth line of the report
heading:

TYPE =HEADING, OBJECT=TEXT, LINE=4, ITEM=2, SIZE=16,$

4. The four-line footing consists of two text lines (‘Supplied by’ and ‘The National
Automobile Statistics Organization’).

The following declaration defines a style for both text lines:

TYPE=FOOTING, ITEM=1, FONT=TIMES, SIZE=16, STYLE=BOLD,$
TYPE=FOOTING, LINE=3, FONT=TIMES, STYLE=BOLD,$

Qualifiers are not required since there are no other sections or details (such as
embedded fields) in this footing.

The StyleSheet named HEAD, consisting of these declarations, produces the following
report:

Page 1

THE JAGUAR V12XKE AUTO IS MADE IN ENGLAND AND
SELLS FOR $ 8,878 (AS OF 06/03/99).

NUMBER OF SEATS: 4 WEIGHT: 3,435

SUPPLIED BY

THE NATIONAL AUTOMOBILE STATISTICS ORGANIZATION

Styling Reports: StyleSheets

10-34 Information Builders

Selecting Report Columns
The following qualifiers select columns:

Qualifier Selects the following subcomponent:

COLUMN Columns in the report as a whole.

ACROSSCOLUMN Columns in ACROSS groups.

ACROSS A specific ACROSS field in a request with multiple ACROSS
phrases.

Consider the following request that includes two ACROSS phrases (ACROSS
COUNTRY and ACROSS CAR):

TABLE FILE CAR
PRINT RETAIL_COST DEALER_COST SALES
ACROSS COUNTRY
ACROSS CAR
WHERE COUNTRY EQ 'ENGLAND'
WHERE CAR EQ 'JAGUAR' OR 'JENSEN'
END

Since column attributes are subcomponents, you must use them in conjunction with a
TYPE attribute that selects a report component. A subcomponent designates different
parts of the report output depending on the TYPE attribute you specify with it; also, you
can refer to the same column in several different ways. Some examples are marked on
the following report output:

TYPE=ACROSSTITLE,ACROSS=COUNTRY
TYPE=ACROSSVALUE,ACROSS=1
TYPE=ACROSSTITLE,ACROSS=2
TYPE=ACROSSVALUE,ACROSS=CAR

TYPE=TITLE,
COLUMN=1

TYPE=REPORT,
COLUMN=1

TYPE=DATA,
COLUMN=1

TYPE=REPORT,
ACROSSCOLUMN=SALES(1)

TYPE=REPORT,
ACROSSCOLUMN=SALES

 Identifying Report Components

Creating Reports 10-35

Syntax How to Select Report Columns
The syntax is

TYPE = coltype [COLUMN={colnotation | ROWTOTAL[(n)|fieldname] }]

or

TYPE = acrosscol [ACROSSCOLUMN = {acrosnotation}]

or

TYPE = {ACROSSVALUE|ACROSSTITLE} [ACROSS = {n|fieldname}]

where:

coltype

Can be REPORT, TITLE, ACROSSVALUE, DATA, SUBTOTAL, or
GRANDTOTAL.

colnotation

Can be n, Pn, Cn, Bn, or fieldname[(n)].

acrosscol

Can be REPORT, TITLE, DATA, SUBTOTAL, or GRANDTOTAL.

acrosnotation

Can be n, Pn, fieldname[(n)].

n

Is a positive integer that identifies a column by its position as follows:

Qualifier Identifies position in . . .

COLUMN The report.

Count ACROSS fields, BY fields, NOPRINT fields, display
fields, and ROW-TOTAL fields from left to right.

ACROSSCOLUMN ACROSS groups counting from left to right.

ACROSS The request.

Count ACROSS phrases from top to bottom.

Pn

Is the same as n, except that it does not count NOPRINT fields.

Cn

Identifies a verb object column by its position from left to right in the report. Counts
all fields, including NOPRINT fields, but excludes BY fields.

Note: C* selects all verb object columns in a report.

Styling Reports: StyleSheets

10-36 Information Builders

Bn

Identifies a BY field by its position from left to right in the report. Counts only BY
fields, including NOPRINT BY fields.

Note: B* selects all BY fields in a report.

fieldname

Identifies a subcomponent by its field name as follows:

When used with: Identifies:

COLUMN A column.

When a field appears more than once, use fieldname(n) to
select a particular occurrence, or fieldname(*) to select all
occurrences.

(Note that fieldname is equivalent to fieldname(1)).

ACROSSCOLUMN A column in ACROSS groups.

When a field appears more than once, use fieldname(n) to
select a particular occurrence.

ACROSS A set of ACROSS titles or data.

ROWTOTAL

Identifies a row total column generated by ROW-TOTAL. When used with
ACROSS, ROW-TOTAL may generate multiple total columns. ROWTOTAL(n)
selects a particular total column. ROWTOTAL(fieldname) selects the row total
column for a particular field. ROWTOTAL(*) selects all row total columns in the
report.

 Identifying Report Components

Creating Reports 10-37

Example Styling With ACROSS Phrases
The following report request contains two ACROSS phrases:

TABLE FILE CAR
SUM SALES
ACROSS COUNTRY
ACROSS CAR
ON TABLE SET STYLE SAMPLE3
ON TABLE HOLD AS SAMPLE3 FORMAT PS
END

Consider the SAMPLE3 StyleSheet:

TOPMARGIN = 0.125 ,$
LEFTMARGIN = 0.125 ,$
RIGHTMARGIN = 0.125 ,$
TYPE=ACROSSTITLE, ACROSS=COUNTRY, STYLE=BOLD ,$
TYPE=ACROSSVALUE, ACROSS=COUNTRY, STYLE=ITALIC ,$

The report request and the StyleSheet produce the following report:

Note:

• The word COUNTRY in the report is the title produced by the phrase ACROSS
COUNTRY in the request. You select it with TYPE=ACROSSTITLE,
ACROSS=COUNTRY.

• The names of the countries are the values of the COUNTRY field produced by the
phrase ACROSS COUNTRY in the request. You select them with
TYPE=ACROSSVALUE, ACROSS=COUNTRY.

• If ACROSS COUNTRY were the only ACROSS phrase in the request, you could
omit the ACROSS qualifiers in the StyleSheet.

Styling Reports: StyleSheets

10-38 Information Builders

Positioning Headings, Footings, and Columns
The POSITION attribute defines a starting position for a column, a heading, or a footing.

Syntax How to Position a Column
The syntax for positioning a column is

TYPE=REPORT, COLUMN = colnotation, POSITION = {n|+n}

where:

colnotation

Specifies a column (see Selecting Report Columns on page 10-34). Note that the
column must be defined for TYPE=REPORT, and that it cannot be an
ACROSSCOLUMN.

n

Is the amount of blank space, in UNITS, between the left margin and the beginning
of the column.

This type of placement is called absolute positioning. It is easy to overlap columns
using this method of column placement. For example, if you position a column at 1
inch from the margin and another column at 1.1 inch from the margin, the two
columns will overlap if the first column is wider than 0.1 inch.

+n

Is the amount of blank space, in UNITS, between the end of the previous column
and the beginning of this column.

This type of placement is called relative positioning.

Note: You can also specify column positions in a report request via spot markers and IN
syntax; in this case the integer value in a column position refers to the number of spaces
(measured in 12-point COURIER font) from the left side of the page. However, the
StyleSheet POSITION attribute is the recommended method for positioning columns and
heading elements.

 Identifying Report Components

Creating Reports 10-39

Syntax How to Position Headings and Footings
Headings and footings have an additional placement option. You can align them with a
particular column. The syntax is

TYPE = headtype[element,] POSITION = {colnotation|[+]n}

where:

headtype

Can be one of the following: TABHEADING, TABFOOTING, HEADING,
FOOTING, SUBHEAD or SUBFOOT.

element

Specifies a subcomponent of the heading or footing (see Selecting Headings and
Footings on page 10-28).

colnotation

Specifies a column (see Selecting Report Columns on page 10-34). The heading or
footing element is placed where the specified column starts. FIELD elements are
justified according to the justification of the column; TEXT elements are aligned
with the left edge of the column.

n

Is the amount of blank space, in UNITS, between the left margin and the beginning
of the column.

+n

Is the amount of blank space, in UNITS, between the previously printed item and the
beginning of this element or component.

Determining Column Widths
The SQUEEZE attribute assigns column widths. See Styling the Page Layout on page
10-13 for a description.

Styling Reports: StyleSheets

10-40 Information Builders

Changing Column Sequence
The SEQUENCE attribute defines the order in which columns are displayed on a report.

By default, FOCUS prints BY fields first, then verb object fields in the order in which the
request specifies them. For multi-verb requests, FOCUS prints the BY fields for the first
verb, followed by the verb object fields of the first verb, followed by the remaining BY
fields for the second verb, and the verb object fields for the second verb. For example:

TABLE FILE EMPLOYEE
SUM ED_HRS CURR_SAL
BY EMP_ID
PRINT ED_HRS CURR_SAL
BY EMP_ID
BY LAST_NAME
BY FIRST_NAME
END

The order of fields in the resulting report is EMP_ID, sum of ED_HRS, sum of
CURR_SAL, LAST_NAME, FIRST_NAME, ED_HRS, CURR_SAL.

To change the sequence of a column in the report, select the column and define its
sequence number.

Syntax How to Change Column Sequence
The syntax is

TYPE = REPORT, COLUMN = colnotation, SEQUENCE = nnn

where:

colnotation

Specifies a column (see Selecting Report Columns on page 10-34).

nnn

Is a positive integer that represents the column’s order in the report.

Note:

• SEQUENCE is valid only with TYPE=REPORT and COLUMN=colnotation. It
reorders all information associated with a column: title, data, subtotal, and
grandtotal.

• SEQUENCE is not valid with ACROSSCOLUMN or with any report output sorted
across the page.

• SEQUENCE is not valid with fields that are displayed over each other using the
OVER parameter. This includes the field immediately before the first OVER
parameter.

• The sequence numbers you assign need not be in sequential order or in increments of
one. FOCUS arranges the columns in lowest to highest order of the numbers you
assign.

 Identifying Report Components

Creating Reports 10-41

FOCUS assigns a number to each column in a report, starting with one on the far left. In
the following request, the default column order is LAST_NAME, FIRST_NAME,
EMP_ID, DEPARTMENT:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND DEPARTMENT
BY LAST_NAME
BY FIRST_NAME
END

When activated for the request, the StyleSheet named SEQU places EMP_ID in the
second column. The revised request and the SEQU StyleSheet follow:

TABLE FILE EMPLOYEE
PRINT EMP_ID AND DEPARTMENT
BY LAST_NAME
BY FIRST_NAME
ON TABLE SET STYLE SEQU
ON TABLE HOLD AS SEQU FORMAT PS
END

StyleSheet SEQU:

TYPE=REPORT, COLUMN=EMP_ID, SEQUENCE=2, FONT=TIMES, $

In the resulting stylized report output, FOCUS shifts columns two and three
(FIRST_NAME and DEPARTMENT) one column to the right so it can place EMP_ID in
column two:

Consider the following StyleSheet:

TYPE=REPORT, COLUMN=DEPARTMENT, SEQUENCE=999, FONT=TIMES, $

With this StyleSheet and any request that prints the field DEPARTMENT,
DEPARTMENT is always the last column in the stylized report output. To ensure that a
column appears last in the report output, select a sequence number that is greater than the
total number of columns.

Styling Reports: StyleSheets

10-42 Information Builders

Specifying Column Spacing
The LEFTGAP and RIGHTGAP attributes define how much space to leave between
columns.

Syntax How to Specify Column Spacing
The syntax is

TYPE=REPORT,[COLUMN=colnatation,] {RIGHTGAP|LEFTGAP} = n

where:

colnotation

Specifies a column (see Selecting Report Columns on page 10-34).

n

Is the amount of blank space, in UNITS, to the right or left of the column area.

LEFTGAP and RIGHTGAP are only valid with TYPE=REPORT and, optionally, with
the qualifier COLUMN.

Consider the following TABLE request:

SET STYLE = SPACING
TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME
BY DEPARTMENT
ON TABLE HOLD AS SPACING FORMAT PS
END

StyleSheet SPACING follows:

TYPE=REPORT, FONT=TIMES, SIZE=10 ,$
TYPE=REPORT, COLUMN=EMP_ID, RIGHTGAP=1 ,$

In the resulting report, the RIGHTGAP attribute places one additional inch of space to
the right of the EMP_ID column:

 StyleSheet Inheritance

Creating Reports 10-43

The following request and StyleSheet place one inch before every column:

SET STYLE=RPTSPAC
TABLE FILE EMPLOYEE
PRINT EMP_ID FIRST_NAME LAST_NAME
BY DEPARTMENT
ONTABLE HOLD AS RPTSPAC FORMAT PS
END
TYPE=REPORT, FONT=TIMES, SIZE=10, LEFTGAP=1,$

Notice that the first column, DEPARTMENT, begins one inch from the left margin:

StyleSheet Inheritance
System defaults define the style of a report component until you create a style that
changes one or more of its characteristics. For example, the font for every report
component is COURIER until you define a style that changes that font.

If a style listed in the StyleSheet lacks one or more style attributes (FONT, SIZE,
STYLE, and COLOR), the components formatted by that style inherit values for the
omitted attributes.

Report components automatically inherit characteristics from larger components as
follows:

• The entire report inherits its characteristics from the default style.

• All report components inherit their characteristics from the values defined for the
entire report.

• Elements in a report component inherit their characteristics from the component to
which they belong. For example, a particular line in a multi-line heading inherits the
characteristics of that heading.

Styling Reports: StyleSheets

10-44 Information Builders

Example Inheriting Styles
Consider the following example:

SET ORIENTATION = LANDSCAPE
SET SQUEEZE = ON

TABLE FILE EMPLOYEE
SUM AVE.GROSS AS 'AVERAGE,GROSS' AND GROSS AS 'GROSS,AMOUNT' AND
COMPUTE NET_PAY/D12.2 = GROSS - DED_AMT; AS 'NET,PAY'
BY HIGHEST PAY_DATE AS 'PAY DATE'
ACROSS DEPARTMENT
HEADING
"Swifty Information Group"
"Department Payroll Report"
" "
"Sorted down by Pay Date, (most recent first)"
"and across the page by Department"
" "
FOOTING
"Confidential Information "
IF DEPARTMENT IS MIS OR PRODUCTION
ON TABLE SET STYLE ACROSS
ON TABLE HOLD AS ACROSS FORMAT PS
END

StyleSheet ACROSS:

 TYPE=REPORT, FONT=TIMES, SIZE=10,$
 TYPE=HEADING, SIZE=16, STYLE=BOLD,$
 TYPE=HEADING, LINE=4, SIZE=14, STYLE=ITALIC,$
 TYPE=HEADING, LINE=5, SIZE=14, STYLE=ITALIC,$
1. TYPE=ACROSSTITLE, SIZE=12, STYLE=UNDERLINE,$
2. TYPE=ACROSSVALUE, STYLE=ITALIC, FONT=HELVETICA,$
3. TYPE=TITLE, FONT=HELVETICA, SIZE=8,$
4. TYPE=DATA, ACROSSCOLUMN=4, FONT=HELVETICA, SIZE=8,$

In the resulting report:

1. The ACROSSTITLE is DEPARTMENT, generated by the phrase ACROSS
DEPARTMENT in the report request.

The declaration for TYPE=ACROSSTITLE makes its size 12 points and its text style
UNDERLINE. It inherits its font (TIMES) from TYPE=REPORT and its color
(BLACK) from system defaults.

2. The ACROSS values are MIS and PRODUCTION, generated by the phrase
ACROSS DEPARTMENT in the report request.

The declaration for TYPE=ACROSSVALUE in the StyleSheet formats their font as
HELVETICA and their text style as ITALIC. They inherit their size (10 points) from
TYPE=REPORT and their color (BLACK) from system defaults.

 StyleSheet Inheritance

Creating Reports 10-45

3. The column titles under each ACROSSVALUE are ‘AVERAGE GROSS’,
‘GROSS,AMOUNT’, and ‘NET,PAY’. There is one set of these titles under MIS
and one set under PRODUCTION in the report. However, since the COMPUTE
expression references DED_AMT, FOCUS adds DED_AMT as a NOPRINT field in
each group between GROSS and NET_PAY. Therefore, NET_PAY becomes the
fourth field.

The declaration for TYPE=TITLE makes the font for column titles HELVETICA
and their size 8 points. They inherit their text style (NORMAL) and their color
(BLACK) from system defaults.

4. The declaration for TYPE=DATA, ACROSSCOLUMN=4, refers to the data values
in the fourth column (the NET_PAY field; see item 3) under each ACROSSVALUE.
This declaration makes their font HELVETICA and their size 8 points. They inherit
their text style (NORMAL) and their color (BLACK) from system defaults.

The FOOTING inherits its style from TYPE=REPORT.

The report output (sized to fit) follows:

Styling Reports: StyleSheets

10-46 Information Builders

Example Styling Subtotals and Grand Totals
The next example illustrates subtotals and grand total:

TABLE FILE EMPLOYEE
PRINT DED_AMT AS 'DEDUCTION'
BY EMP_ID AS 'EMPLOYEE'
BY LAST_NAME NOPRINT
BY FIRST_NAME NOPRINT
BY PAY_DATE AS 'PAY DATE'
BY DED_CODE AS 'DEDUCTION CODE'
ON EMP_ID SUBTOTAL
ON PAY_DATE SUBTOTAL
ON FIRST_NAME SUBHEAD
"<FIRST_NAME <HIRE_DATE "
HEADING
"EMPLOYEES WITH JOBCODE <CURR_JOBCODE "
" "
ON TABLE COLUMN-TOTAL
WHERE CURR_JOBCODE EQ 'B04';
WHERE PAY_DATE EQ 820730;
WHERE DED_CODE EQ 'HLTH' OR 'LIFE';
ON TABLE SET STYLE TOTALS
ON TABLE HOLD AS TOTALS FORMAT PS
END

StyleSheet TOTALS:

 TYPE=REPORT, FONT=TIMES,$
1. TYPE=SUBTOTAL, BY=B1, STYLE=BOLD,$
2. TYPE=SUBTOTAL, BY=B4, STYLE=ITALIC,$
3. TYPE=GRANDTOTAL, SIZE=14,$
 TYPE=DATA, COLUMN=B1, FONT=TIMES, STYLE=BOLD,$
 TYPE=DATA, COLUMN=B4, FONT=TIMES, STYLE=BOLD,$

In the resulting report:

1. The first BY column is EMPLOYEE, generated by the phrase BY EMP_ID AS
‘EMPLOYEE’ in the request.

The declaration for TYPE=SUBTOTAL, BY=B1 makes the text style for the
subtotal line generated by the phrase ON EMP_ID SUBTOTAL bold. This subtotal
line inherits its font (TIMES) from TYPE=REPORT and its size and color (12 points
and BLACK) from system defaults.

2. The fourth BY column is PAY DATE. It appears to be the second BY column
because LAST_NAME and FIRST_NAME are NOPRINT fields.

The declaration for TYPE=SUBTOTAL, BY=B4 makes the text style for the
subtotal line generated by the phrase ON PAY_DATE SUBTOTAL italic. This
subtotal line inherits its font (TIMES) from TYPE=REPORT and its size and color
(12 points and BLACK) from system defaults.

 StyleSheet Inheritance

Creating Reports 10-47

3. The grand total is the last total in a report. In this case it is the total generated by the
phrase ON TABLE COLUMN-TOTAL.

The declaration for TYPE=GRANDTOTAL makes the size of this total 14 points. It
inherits its font (TIMES) from TYPE=REPORT and its style and color (NORMAL
and BLACK) from system defaults.

Following is the report output:

Styling Reports: StyleSheets

10-48 Information Builders

Example Styling RECAP Lines
The final example illustrates RECAP lines:

TABLE FILE EMPLOYEE
SUM GROSS AS 'Gross Amount' AND DED_AMT AS 'Deduction Amt' AND
COMPUTE DG_RATIO/F4.2 = DED_AMT / GROSS; AS 'RATIO'
BY DEPARTMENT AS 'Department'
BY PAY_DATE AS 'Pay Date'
WHERE PAY_DATE EQ 820730
ON DEPARTMENT RECAP DEPT_NET/D8.2M=GROSS - DED_AMT;
ON PAY_DATE RECAP NET/D8.2M=GROSS - DED_AMT;
HEADING
" Pay Summary"
ON TABLE SET STYLE RECAP
ON TABLE HOLD AS RECAP FORMAT PS
END

StyleSheet RECAP.

 TYPE=REPORT, FONT=TIMES, SIZE=10,$
1. TYPE=RECAP, BY=B2, STYLE=ITALIC,$
2. TYPE=RECAP, BY=B1, STYLE=BOLD,$

In the report:

1. The second BY field in the request is PAY_DATE. Therefore, the declaration for
TYPE=RECAP, BY=B2 refers to the line in the report generated by the phrase ON
PAY_DATE RECAP NET ... in the request. This declaration makes the NET line
italic. It inherits its font and size (TIMES and 10 points) from TYPE=REPORT and
its color (BLACK) from system defaults.

2. The first BY field is DEPARTMENT. Therefore, the declaration for TYPE=RECAP,
BY=B1 refers to the line generated by the phrase ON DEPARTMENT RECAP
DEPT_NET ... in the request. This declaration makes the DEPT_NET line bold. It
inherits its font and size (TIMES and 10 points) from TYPE=REPORT and its color
(BLACK) from system defaults.

 Conditional Styling

Creating Reports 10-49

Conditional Styling
Conditional styling, or stoplighting, formats a report component based on the results of a
conditional test. The WHEN attribute specifies the test condition. The syntax is

WHEN = column operator {value|column}

where:

column

Specifies a single column in the report (see Selecting Report Columns on page
10-34). You can include prefixes such as TOT. or MIN. in front of a field name as
long as the prefixed fields appear in the TABLE request.

operator

Can be one of the following: EQ, NE, LE, LT, GE or GT.

value

Is a number or a string enclosed in single quotation marks. If it is a string, its case
(for example, uppercase) must match the case of the data in the data source.

Note:

• FOCUS ignores WHEN conditions that refer to a column that is not referenced in the
report request. If you want to base a WHEN condition on a field that you do not
want to print in the report, make the field a NOPRINT field. For example:

TABLE FILE CAR
SUM MAX.SALES NOPRINT
SUM SALES BY COUNTRY BY CAR
END
TYPE=HEADING, STYLE=BOLD, WHEN= MAX.SALES LT 10000 ,$

• Arithmetical and logical expressions are not allowed on either side of the operator.
However, you can create a temporary field that evaluates the expression and use that
temporary field in the WHEN expression. For example:

DEFINE FILE CAR
TEST/I2 = RETAIL_COST GT (1.1 * DEALER_COST);
END
TABLE FILE CAR
 .
 .
 .
END
TYPE=DATA, COLUMN=RETAIL_COST , COLOR=RED, WHEN=TEST NE 0 ,$

The field TEST must be a field in the report request. If you do not want to print it in
the report, make it a NOPRINT field.

Styling Reports: StyleSheets

10-50 Information Builders

• If more than one WHEN condition applies to a report component, FOCUS evaluates
them in the order in which they appear in the StyleSheet. For example:

TYPE=DATA, COLOR=RED, WHEN=RETAIL_COST GT 12000, $
TYPE=DATA, COLOR=GREEN, WHEN=RETAIL_COST GT 8000,$

Any data line in which the value of RETAIL_COST satisfies both conditions is
printed in red because the WHEN condition for red comes first in the StyleSheet.
You can use this feature to implement simple if-then-else logic. You can implement
more complex logic by combining this technique with the use of temporary fields.

Example Conditional Styling
The following StyleSheet prints lines in red and bold when the value of the field SALES
is greater than $1,000:

TYPE=DATA, STYLE=BOLD, COLOR=RED, WHEN=SALES GT 1000 ,$

The next StyleSheet prints the value in the column SALES in red if SALES is less than
$100,000, or in green if SALES exceeds $200,000:

TYPE=DATA, COLUMN=SALES, COLOR=RED, WHEN=SALES LT 100000 ,$
TYPE=DATA, COLUMN=SALES, COLOR=GREEN, WHEN=SALES GT 200000 ,$

This StyleSheet prints the data value in column C1 in bold whenever the value of SALES
is greater than $1,000:

TYPE=DATA, COLUMN=C1, STYLE=BOLD, WHEN=SALES GT 1000 ,$

In the next example, all lines representing instances in which COUNTRY has the value
ENGLAND are shown in bold. If COUNTRY is a sort (BY) field, the entire sort group is
shown in bold, even though the value ENGLAND appears on only one line:

TYPE=DATA, WHEN=COUNTRY EQ 'ENGLAND', STYLE=BOLD ,$

The next example illustrates that for TYPE=REPORT, an entire report column—
including the title, data, subtotal, and grand total—can change if the WHEN condition is
based on an aggregate value:

TYPE=REPORT, COLUMN=C1, WHEN=TOT.SALES LT 100000, COLOR=RED,$

 Conditional Styling

Creating Reports 10-51

Using WHEN With ACROSSCOLUMN
If you use WHEN with ACROSSCOLUMN, styles are applied differently depending on
whether the column referenced in the WHEN condition falls within ACROSS groups. A
WHEN column that is within an ACROSS group controls the formatting of all data
within the same ACROSS group.

Consider the following report output:

 SEATS
 4 5
COUNTRY RETAIL_COST DEALER_COST RETAIL_COST DEALER_COST
--
ENGLAND 8000 7000 7500 6000
JAPAN 9000 8000 10000 9000

In this report, both RETAIL_COST and DEALER_COST are printed ACROSS SEATS.
However, COUNTRY does not fall within the ACROSS group.

In the following StyleSheet, data values in the RETAIL_COST columns are formatted
according to the data in their corresponding DEALER_COST columns:

TYPE=DATA, ACROSSCOLUMN=RETAIL_COST, COLOR=RED, WHEN=DEALER_COST GT 7100,$

Therefore, the value 9000 in the RETAIL_COST column under SEATS=4 is printed in
red, since its corresponding DEALER_COST value (8000) is greater than 7100; the
RETAIL_COST value 7500 is not printed in red because its corresponding
DEALER_COST is not greater than 7100.

In the next StyleSheet, the WHEN condition references the column COUNTRY, which is
not part of an ACROSS group:

TYPE=DATA, ACROSSCOLUMN=RETAIL_COST, COLOR=RED, WHEN=COUNTRY EQ 'ENGLAND',$

In this case all RETAIL_COST values in the line for ENGLAND are printed in red.

If a StyleSheet uses ACROSSCOLUMN with WHEN and a field name referenced in the
WHEN condition appears both under the ACROSS and elsewhere in the report (as is
possible with a multi-verb request), the field name under the ACROSS takes precedence.
You can refer to the other column using another version of the column notation, such as
Cn.

Styling Reports: StyleSheets

10-52 Information Builders

For example, in the next request, the RETAIL_COST column under each value of CAR
may be printed in bold depending on the corresponding value of DIFF for each CAR:

TABLE FILE CAR
SUM RETAIL_COST AND DEALER_COST
AND COMPUTE DIFF/D12.2=RETAIL_COST - DEALER_COST;
ACROSS CAR
ON TABLE SET SQUEEZE ON
ON TABLE SET STYLE 120193A
ON TABLE HOLD AS 120193A FORMAT PS
END

StyleSheet 120193A:

TYPE=REPORT, FONT=TIMES, SIZE=10,$
TYPE=DATA, ACROSSCOLUMN=RETAIL_COST, SIZE=14, WHEN=DIFF GT 9000,
STYLE=BOLD,$

Two pages of the resulting report follow:

To specify the DIFF field outside the ACROSS, you can use the notation C3:

WHEN=C3 GT 9000

 Conditional Styling

Creating Reports 10-53

Example Conditional Styling With a BY Field
The following example uses the notation COLUMN = B1 to select the COUNTRY
column and to make it bold, italic, and l4-point for lines with SALES greater than 9000:

TABLE FILE CAR
PRINT CAR AND SALES
BY COUNTRY
HEADING
"USING STOPLIGHTING COLUMN=SALES, WHEN=SALES GT 9000"
ON TABLE SET STYLE STOPLIT4
ON TABLE HOLD AS STOPLIT4 FORMAT PS
END

StyleSheet STOPLIT4:

TYPE=REPORT, FONT=TIMES,$
TYPE=DATA, COLUMN=B1, SIZE=14, STYLE=BOLD+ITALIC, WHEN=SALES GT 9000,$

The report output follows:

Styling Reports: StyleSheets

10-54 Information Builders

Example Conditional Styling With A NOPRINT Field
The next example uses the value of total sales in the WHEN condition. The column
TOT.SALES must be referenced in the request or FOCUS ignores the WHEN condition.
However, it is a NOPRINT field and is not printed in the report.

TABLE FILE CAR
SUM TOT.SALES NOPRINT
SUM SALES
BY COUNTRY
BY CAR
HEADING
"USING STOPLIGHTING"
"WHEN TOT.SALES GT 200000 HEADING LINE 2"
ON TABLE SET STYLE STOPLIT5
ON TABLE HOLD AS STOPLIT5 FORMAT PS
END

StyleSheet STOPLIT5:

TYPE=REPORT, FONT=TIMES, SIZE=10,$
TYPE=HEADING, LINE=2, SIZE=12, STYLE=BOLD,
 WHEN=TOT.SALES GT 200000,$

The report output follows:

Creating Reports 11-1

CHAPTER 11

Saving and Reusing Report Output

Topics:
• Saving Your Report Output

• Creating HOLD and PCHOLD Files

• Holding Report Output in FOCUS
Format

• Controlling Attributes in HOLD Master
Files

• Keyed Retrieval From HOLD Files

• Creating SAVE and SAVB Files

• Choosing Output File Formats

• Saving Report Output in INTERNAL
Format

When you run a report request, by default the data values that
you request are collected and presented in a viewable form
complete with column headings and other formatting features.
You can take those same data values and, instead of formatting
them for viewing, use them to create special data files to:

• Display as a Web page, as a printed document, or within a
text document.

• Process in another application, such as a spreadsheet, a
database, a word processor, or a 3GL program.

• Send to another location, such as a browser or PC.

• Extract a subset of the original data source in order to
generate multi-step reports.

The output files you create are stored locally by FOCUS for
S/390 and by WebFOCUS (Windows version) when used in a
local environment.

The output files are stored on the server platform by
WebFOCUS (browser version). When used in a server
environment, the output files are also stored on the server
platform by WebFOCUS (Windows version) and by FOCUS for
S/390.

Saving and Reusing Report Output

11-2 Information Builders

Saving Your Report Output
The following commands enable you to extract and save report output in a variety of file
types and formats to serve a wide range of purposes:

• HOLD. The HOLD command creates a data source containing the output of a report
request. You can specify that the HOLD file’s data be in BINARY format (the
default), be formatted as a FOCUS data source, be formatted as a simple character
file, or be held in a format suitable for use by a variety of other software products or
helper applications. For some formats, the HOLD command also creates a
corresponding Master File. You can then write other report requests that in turn
extract or save data from the HOLD file. For details, see Creating HOLD and
PCHOLD Files on page 11-3.

• PCHOLD. The PCHOLD command creates a data source containing the output of a
report request, and downloads the HOLD data source and the optional Master File to
a client computer or browser. As with a HOLD file, you can specify a variety of file
formats. For details, see Creating HOLD and PCHOLD Files on page 11-3.

Note: If you specify an ON TABLE PCHOLD command without a FORMAT,
XML/HTML code is returned to the browser. In WebFOCUS Version 4.2.1a, the
Master File and report output are returned to the browser. To avoid this, use ON
TABLE HOLD FORMAT ALPHA.

• SAVE. The SAVE command is identical to a HOLD command, except that it does
not create a Master File, and the default format is ALPHA, not BINARY. If you
wish to create a SAVE file in BINARY format, you can use a variation of the SAVE
command called SAVB. For details, see How to Create a SAVB File on page 11-25.

As with a HOLD file, you can specify a variety of formats suitable for use with other
software products. For details, see Creating SAVE and SAVB Files on page 11-23.

Reference Naming and Preserving Report Output Files
Report output files remain usable until they are erased or written over. Subsequent output
files created during a session replace the initial versions. Hence, only one output file of
each type can be active at one time, unless you give it another name by using the AS
phrase. For details see How to Create a HOLD File on page 11-4.

A FILEDEF or ALLOCATE command is automatically issued when you create an output
file. The ddname used to identify the file is the same as the name of the report output file
(HOLD, SAVE, or SAVB, or the name in the AS phrase), if not already allocated.

In addition, in the VM/CMS environment you can use a FILEDEF command to save an
output file to a specific location and assign it a file name, file type, and file mode. In
MVS, you can dynamically allocate an output file using the DYNAM ALLOCATE or
TSO ALLOCATE command. See your Overview and Operating Environments manual
for details.

 Creating HOLD and PCHOLD Files

Creating Reports 11-3

Creating HOLD and PCHOLD Files
You can use the HOLD and PCHOLD commands to create report output files for a range
of purposes:

• As a tool for data extraction, the HOLD command enables you to retrieve and
process data, then extract the results for further processing. That is, your report
request can create a new data source, complete with a corresponding Master File for
certain data formats, from which you can generate new reports.

The output Master File contains only the fields in the report request. The fields in a
HOLD file have the original names that would be retrieved had the report been
displayed or printed. You can alter the field names in the output Master File using
the AS phrase in conjunction with the command SET ASNAMES. For details, see
Controlling Field Names in a HOLD Master File on page 11-14.

When created in BINARY format (the default):

• The HOLD file is a sequential single-segment data source. The HOLD Master
File is a subset of the original Master File, and may also contain fields that have
been created using the COMPUTE or DEFINE commands or generated in an
ACROSS phrase.

• By default fields with format I remain four-byte binary integers; format F fields
remain in four-byte floating-point format; format D fields remain in eight-byte
double-precision floating-point; and format P fields remain in packed decimal
notation and occupy eight bytes (for fields less than or equal to eight-bytes long)
or 16 bytes (for packed decimal fields longer than eight bytes). Alphanumeric
fields (format A) are stored in character format.

Every data field in the sequential extract record is aligned on the start of a full
4-byte word. Therefore, if the format is A1, the field is padded with three bytes
of blanks on the right. This alignment makes it easier for user-coded subroutines
to process these data fields. (Under some circumstances, you may wish to
prevent the padding of integer and packed decimal fields; you can do so with
HOLD FORMAT INTERNAL. For details, see Saving Report Output in
INTERNAL Format on page 11-42.)

• As a means of providing report output files for display or processing in other
software applications, the HOLD command enables you to specify the appropriate
formats. For details see Choosing Output File Formats on page 11-26.

• When an application requires a data format that is not among the HOLD options, you
can use a subroutine to process each output record as it is written to the HOLD data
source. For details see How to Create a HOLD File on page 11-4.
For information on writing programs to create HOLD files, see Appendix D, Writing
User-Coded Programs to Create HOLD Files.

Saving and Reusing Report Output

11-4 Information Builders

The PCHOLD command enables you to extract data from the WebFOCUS Reporting
Server by way of the WebFOCUS client, and automatically display the data in HTML
format in your browser.

In addition, if you have established a helper application in WebFOCUS or in the S/390
Web Interface, you can use the command ON TABLE PCHOLD to display the data in
the helper application’s viewer. For example, if a procedure contains the ON TABLE
PCHOLD FORMAT EXCEL command, data is not returned to the browser in HTML
format. Instead, data is returned and imported into an Excel spreadsheet, or other
spreadsheet program you specify to your browser.

In contrast, when data access is handled directly by the iWay Server (without intervention
by the WebFOCUS client), as is the case for WebFOCUS (Windows version) used in
client/server mode and for FOCUS for S/390 when used as a client to iWay, then the data
is extracted to a PCHOLD file and automatically delivered to your PC for local reporting.

Note: If your environment supports the SET parameter SAVEMATRIX, you can
preserve the internal matrix of your last report in order to keep it available for subsequent
HOLD, SAVE, and SAVB commands when the request is followed by Dialogue
Manager commands. For details on SAVEMATRIX, see the Developing Applications
manual.

Syntax How to Create a HOLD File
You can create a HOLD file from a report request using the following syntax
ON TABLE HOLD [AS filename][FORMAT fmt][MISSING {ON OFF}][VIA program]

or
hold_field HOLD [AS filename][FORMAT fmt][MISSING {ON OFF}]
 [VIA program]

After a report is executed, you can use the following syntax to create the HOLD file
HOLD [AS filename][FORMAT fmt][MISSING {ON|OFF}][VIA program]

where:
HOLD

Extracts and saves report output. When issued without an explicit format, the HOLD
command uses its default format: BINARY. The output is saved with an associated
Master File.

hold_field

Is the name of the last field in the request.
AS filename

Specifies a name for the HOLD file. If you do not specify a file name, HOLD is used
as the default name. Since each subsequent HOLD command overwrites the previous
HOLD file, it is useful practice to code a distinct file name in each request to direct
the extracted data to a separate file, thereby preventing it from being overwritten by
the next HOLD command.

 Creating HOLD and PCHOLD Files

Creating Reports 11-5

FORMAT fmt

Specifies the format of the HOLD output file. The default format is BINARY.

• To display as a Web page, choose:
HTML, HTMTABLE

These formats are supported through the Web Interface.

• To display as a printed document, choose:
PDF, PS

PDF format is supported through the Web Interface.

• To use in a text document, choose:
ALPHA, WP

• To use in a spreadsheet application, choose:
DIF, EXCEL, SYLK, LOTUS

• To use in a database application, choose:
FOCUS, DB2, FUSION, SQL, SQLORA

The following additional formats are supported when FOCUS is used as a client
to iWay:
INGRES, REDBRICK, SQLDBC, SQLINF, SQLMSS, SQLSYB, SQLODBC

• To use with a 3GL program, choose:
INTERNAL

• To use for additional reporting in FOCUS, choose:
ALPHA, BINARY, FOCUS

• To use as a transaction file for modifying a data source, choose:
ALPHA, BINARY

For details about particular formats, see Choosing Output File Formats on page
11-26.

MISSING

Controls whether fields with the attribute MISSING=ON in the Master File are
carried over into the HOLD file. MISSING ON is the default. If the HOLD
command specifies MISSING OFF, the MISSING attribute is not carried over. For
related information see Chapter 12, Handling Records With Missing Field Values.

VIA program

Calls a user-coded program to create the extract file. BINARY format is the default;
ALPHA format is also available. Other formats are not available when you use a
program with the HOLD command.

Saving and Reusing Report Output

11-6 Information Builders

Syntax How to Create HOLD Files From Hot Screen
You can specify a HOLD file from the FOCUS command line or from Hot Screen after
the report is run and displayed.

The syntax is:
HOLD [AS filename][FORMAT fmt][MISSING {ON|OFF}][VIA program]

You can issue HOLD from the Hot Screen command line at any time while a report is
displayed and on any page of the report. Regardless of the page from which you issue the
command, the entire report is saved, and a data source and Master File are created for that
report (just as they are when you issue the HOLD or PCHOLD command from within a
TABLE request, or after exiting Hot Screen).

You can issue multiple HOLD commands for a single TABLE request; however, once
you specify the FOCUS format with a HOLD command from Hot Screen, you cannot
issue another HOLD command during that Hot Screen session.

Note that you cannot use the SAVE or SAVB commands from Hot Screen. You must
include these commands in a report request, or issue them from the FOCUS command
level after exiting Hot Screen.

Syntax How to Create a PCHOLD File
The syntax for PCHOLD in a report request is
ON TABLE {PCHOLD|HOLD AT CLIENT}[AS filename] [FORMAT fmt]

where:
PCHOLD|HOLD AT CLIENT

Downloads HOLD files to a browser or other client application. HOLD AT CLIENT
is a synonym for PCHOLD. When issued without an explicit format, the PCHOLD
command uses its default format: ALPHA. The output is saved as character data with
a Master File.

AS filename

Specifies a name for the PCHOLD file. If you do not specify a file name, HOLD is
used as the default name. Since each subsequent PCHOLD command overwrites the
previous PCHOLD file, it is useful practice to code a distinct file name in each
request to direct the extracted data to a separate file, thereby preventing it from being
overwritten by the next PCHOLD command.

 Creating HOLD and PCHOLD Files

Creating Reports 11-7

FORMAT fmt

Specifies the format of the PCHOLD file. The default format is ALPHA.

• To display as or in a Web page, choose:
HTML, HTMTABLE

These formats are supported through the Web Interface.

• To display as a printed document, choose:
PDF

This format is supported through the Web Interface.

• To use in a text document, choose:
ALPHA, WP

• To use in a spreadsheet application, choose:
DIF, EXCEL, LOTUS

• To use for additional reporting in FOCUS, choose:
ALPHA, BINARY

For details about particular formats, see Choosing Output File Formats on page
11-26.

Example Extracting Data to a HOLD File
The following request extracts data from the EMPLOYEE data source and creates a
HOLD file:
TABLE FILE EMPLOYEE
SUM CURR_SAL AND ED_HRS
BY DEPARTMENT
LIST CURR_SAL AND ED_HRS AND BANK_ACCT
BY DEPARTMENT
BY LAST_NAME BY FIRST_NAME
ON TABLE HOLD
END

The following message displays:
NUMBER OF RECORDS IN TABLE= 12 LINES= 12

You will then see the message:
HOLDING...

To display the report generated by this request, you can issue a report request against the
HOLD file. In FOCUS for S/390 and WebFOCUS (Windows version), you can also issue
the RETYPE command.

Tip:
If you wish to view the information in the HOLD Master File before reporting against it, you
can issue the query command ? HOLD. See How to Query a HOLD Master File on page
11-8.

Saving and Reusing Report Output

11-8 Information Builders

Syntax How to Query a HOLD Master File
If the HOLD format option you select creates a Master File, you can issue the command
? HOLD

to display the fields, aliases, and formats in the HOLD Master File. This command shows
field names up to 32 characters. If a field name exceeds 32 characters, a caret (>) in the
32nd position indicates a longer field name.

If you have renamed the HOLD file using AS filename, use the following syntax:
? HOLD filename

Example Reporting Against the HOLD Master File
In the following HOLD file, the formats shown are the values of the FORMAT attribute.
You can see the values of the ACTUAL attribute by displaying the HOLD Master File
using TED or another editor. USAGE and ACTUAL formats for text fields specify only
the length of the first line of each logical record in the HOLD file. The USAGE format is
the same as the field format in the original Master File. The ACTUAL format is rounded
up to a full (internal) word boundary, as is done for alphanumeric fields.
The following request creates a HOLD file and displays the fields, aliases, and formats in
the associated Master File:
TABLE FILE EMPLOYEE
SUM CURR_SAL AND ED_HRS
BY DEPARTMENT
LIST CURR_SAL AND ED_HRS AND BANK_ACCT
BY DEPARTMENT
BY LAST_NAME BY FIRST_NAME
ON TABLE HOLD
END

? HOLD

The output is:
DEFINITION OF HOLD FILE: HOLD
FIELDNAME ALIAS FORMAT

DEPARTMENT E01 A10
CURR_SAL E02 D12.2M
ED_HRS E03 F6.2
LAST_NAME E04 A15
FIRST_NAME E05 A10
LIST E06 I5
CURR_SAL E07 D12.2M
ED_HRS E08 F6.2
BANK_ACCT E09 I9S

 Holding Report Output in FOCUS Format

Creating Reports 11-9

You can now issue the following report request against the HOLD file:
TABLE FILE HOLD
PRINT E07 AS 'SALARY OF,EMPLOYEE' AND LAST_NAME AND FIRST_NAME
BY HIGHEST E03 AS 'TOTAL,DEPT,ED_HRS'
BY E01
BY HIGHEST E08 AS 'EMPLOYEE,ED_HRS'
END

The output is:
TOTAL
DEPT EMPLOYEE SALARY OF
ED_HRS DEPARTMENT ED_HRS EMPLOYEE LAST_NAME FIRST_NAME
------ ---------- -------- --------- --------- ----------
231.00 MIS 75.00 $21,780.00 BLACKWOOD ROSEMARIE
 50.00 $18,480.00 JONES DIANE
 45.00 $27,062.00 CROSS BARBARA
 36.00 $13,200.00 SMITH MARY
 25.00 $9,000.00 GREENSPAN MARY
 .00 $18,480.00 MCCOY JOHN
120.00 PRODUCTION 50.00 $16,100.00 MCKNIGHT ROGER
 30.00 $26,862.00 IRVING JOAN
 25.00 $11,000.00 STEVENS ALFRED
 10.00 $9,500.00 SMITH RICHARD
 5.00 $21,120.00 ROMANS ANTHONY
 .00 $29,700.00 BANNING JOHN

Holding Report Output in FOCUS Format
Whether issued within a request or after the request has been executed, the HOLD
command can create a FOCUS data source and a corresponding Master File using the
data extracted by the report request. This feature enables you to create:

• A FOCUS data source from any other supported data source type.

• A subset of an existing FOCUS data source.

Tip:
If you are working in an environment that supports SCAN, FSCAN, MODIFY, or Maintain,
and you create a HOLD file in FOCUS format, you can update, as well as report against,
the HOLD file. See your documentation on these facilities for details.

Saving and Reusing Report Output

11-10 Information Builders

Syntax How to Create HOLD Files in FOCUS Format
In a report request, the syntax is
ON TABLE HOLD [AS filename] FORMAT FOCUS [INDEX field1 field2 ...]

After a report request is run, the syntax is
HOLD [AS filename] FORMAT FOCUS [INDEX field1 field2 ...]

where:
AS filename

Specifies a name for the HOLD file. If you do not specify a file name, HOLD is used
as the default name. Since each subsequent HOLD command overwrites the previous
HOLD file, it is useful practice to code a distinct file name in each request to direct
the extracted data to a separate file, thereby preventing it from being overwritten by
the next HOLD command.

The name can be up to 64 characters long. If you use a name longer than eight
characters on OS/390, an eight-character member name will be generated as
described in the Describing Data manual. To relate the long name to the short
member name, the $ VIRT attribute will be generated on the top line in the Master
File. The resulting HOLD file will be a temporary data file. To allocate the long
Master File name to a permanent data file, issue the DYNAM ALLOCATE
command with the LONGNAME option prior to the HOLD request. The ddname in
the command must refer to an existing member of the MASTER PDS.

INDEX field1...

Enables you to index FOCUS fields. All fields specified after INDEX will be
specified as FIELDTYPE=I in the Master File. Up to four fields can be indexed.

Note that once you use this format from Hot Screen, you cannot issue another HOLD
command while in the same Hot Screen session.

Reference Operating System Notes for HOLD Files in FOCUS Format
In CMS, a USE command is issued and the new data source and Master File are created
on the disk that has WRITE permission and the most available space.

In MVS, the HOLD file is dynamically allocated if it is not currently allocated. This
means the system may delete the file at the end of the session, even if you have not. Since
HOLD files are usually deleted, this is a desired default; however, if you want to save the
Master File, we recommend that it be allocated to ddname HOLDMAST as a permanent
data set; the allocation can be performed in the standard FOCUS CLIST. For example,
ALLOC F(HOLDMAST) DA('qualif.HOLDMAST') SHR REUSE

Note that ddname HOLDMAST must not refer to the same PDS referred to by the
MASTER and FOCEXEC ddnames.

 Holding Report Output in FOCUS Format

Creating Reports 11-11

Reference Controlling the FOCUS File Structure
The structure of the FOCUS data source being created varies according to the report
request. The rules are as follows:

• Each aggregation command (SUM, COUNT, WRITE) creates a segment, with each
new BY field in the request becoming a key. In a request that uses multiple display
commands, the key to any created segment does not contain keys that are in the
parent segment.

• If a PRINT or LIST command is used to create a segment, all the BY fields, together
with the internal FOCLIST field, form the key.

• All fields specified after INDEX will be indexed; that is, FIELDTYPE=I will be
specified in the Master File. Up to four fields may be indexed.

To control whether the ACCEPT and TITLE attributes are propagated to the Master File
associated with the HOLD file, use the SET HOLDATTR command. To control the
FIELDNAME attribute in the Master of the HOLD file, use the SET ASNAMES
command. For more information on how to control the TITLE, ACCEPT, and
FIELDNAME attributes in a HOLD Master File see Controlling Attributes in HOLD
Master Files on page 11-14.

Tip:
In environments that support the MODIFY facility, when the command HOLD FORMAT
FOCUS is executed, a Master File for the HOLD file and a sequential data source called
FOC$HOLD are created. The data in FOC$HOLD is then loaded into the HOLD file using
an internally generated MODIFY procedure.

Example Creating a HOLD File in FOCUS Format
The following example creates a subset of the CAR file:
TABLE FILE CAR
SUM SALES BY COUNTRY BY CAR BY MODEL
ON TABLE HOLD AS X1 FORMAT FOCUS
END

This request creates a single-segment FOCUS data source with a SEGTYPE of S3
(because it has three BY fields) named X1 FOCUS.

The X1 Master File is created by the request:
FILE=X1 ,SUFFIX=FOC
SEGNAME=SEG01, SEGTYPE=S03
FIELDNAME =COUNTRY ,E01 ,A10 ,$
FIELDNAME =CAR ,E02 ,A16 ,$
FIELDNAME =MODEL ,E03 ,A24 ,$
FIELDNAME =SALES ,E05 ,I6 ,$

Saving and Reusing Report Output

11-12 Information Builders

Example Using PRINT to Create a FOCUS Data Source With a FOCLIST
Field
This example creates a single-segment FOCUS data source with a SEGTYPE of S4.
Since this is a PRINT request, S4 stands for the addition of the three new BY fields and
the FOCLIST value.
TABLE FILE CAR
PRINT SALES BY COUNTRY BY CAR BY MODEL
ON TABLE HOLD AS X2 FORMAT FOCUS INDEX MODEL
END

The Master File created by this request is:
FILE=X2 ,SUFFIX=FOC
SEGNAME=SEG01, SEGTYPE=S04
FIELDNAME =COUNTRY ,E01 ,A10 ,$
FIELDNAME =CAR ,E02 ,A16 ,$
FIELDNAME =MODEL ,E03 ,A24 ,FIELDTYPE=I,$
FIELDNAME =FOCLIST ,E02 ,I5 ,$
FIELDNAME =SALES ,E05 ,I6 ,$

Example Creating a Two-Segment FOCUS Data Source
The following request contains two SUM commands. The first, SUM SALES BY
COUNTRY, creates a segment, with COUNTRY as the key and the summed values of
SALES as a data field. The second, SUM SALES BY COUNTRY BY CAR BY
MODEL, creates a descendant segment, with CAR and MODEL as the keys and SALES
as a non-key field.

The COUNTRY field does not form part of the key to the second segment. COUNTRY is
a key in the path to the second segment; any repetition of this value would be redundant.
TABLE FILE CAR
SUM SALES BY COUNTRY
SUM SALES BY COUNTRY BY CAR BY MODEL
ON TABLE HOLD AS X3 FORMAT FOCUS
END

A two-segment FOCUS data source with the following structure is created:

COUNTRY
SALES

CAR
MODEL
SALES

SEGO1 S1

SEGO2 S2

 Holding Report Output in FOCUS Format

Creating Reports 11-13

The Master File for this newly-created FOCUS data source is:
FILE=X3 ,SUFFIX=FOC
SEGNAME=SEG01, SEGTYPE=S01
FIELDNAME =COUNTRY ,E01 ,A10 ,$
FIELDNAME =SALES ,E02 ,I6 ,$
SEGNAME=SEG02, SEGTYPE=S02,PARENT=SEG01
FIELDNAME =CAR ,E03 ,A16 ,$
FIELDNAME =MODEL ,E04 ,A24 ,$
FIELDNAME =SALES ,E05 ,I6 ,$

Example Creating a Three-Segment FOCUS Data Source
In this example, each display command creates one segment.

The key to the root segment is the new BY field, COUNTRY, while the keys to the
descendant segments are the new BY fields. The last segment uses the internal FOCLIST
field as part of the key, since the display command is PRINT.
TABLE FILE CAR
SUM SALES BY COUNTRY BY CAR
SUM SALES BY COUNTRY BY CAR BY MODEL
PRINT SALES BY COUNTRY BY CAR BY MODEL BY BODY
ON TABLE HOLD AS X4 FORMAT FOCUS INDEX COUNTRY MODEL
END

The Master File is:
FILE=X4 ,SUFFIX=FOC
SEGNAME=SEG01, SEGTYPE =S02
FIELDNAME =COUNTRY ,E01 ,A10 ,FIELDTYPE=I,$
FIELDNAME =CAR ,E02 ,A16 ,$
FIELDNAME =SALES ,E03 ,I6 ,$
SEGNAME=SEG02, SEGTYPE =S01 ,PARENT=SEG01
FIELDNAME =MODEL ,E04 ,A24 ,FIELDTYPE=I,$
FIELDNAME =SALES ,E05 ,I6 ,$
SEGNAME=SEG03, SEGTYPE =S02 ,PARENT=SEG02
FIELDNAME =BODYTYPE ,E06 ,A12 ,$
FIELDNAME =FOCLIST ,E07 ,I5 ,$
FIELDNAME =SALES ,E08 ,I6 ,$

Saving and Reusing Report Output

11-14 Information Builders

Controlling Attributes in HOLD Master Files
The commands SET ASNAMES, SET HOLDLIST, and SET HOLDATTR enable you to
control the FIELDNAME, TITLE, and ACCEPT attributes in HOLD Master Files. These
commands are issued prior to the report request and remain in effect for the duration of
the session, unless changed. For information about session duration in WebFOCUS
environments, see the Developing Applications manual.

• The SET ASNAMES command causes text specified in an AS phrase to be used as
the field name in the HOLD Master File, and to be concatenated to the beginning of
the first field name specified in an ACROSS phrase. For details, Controlling Field
Names in a HOLD Master File on page 11-14.

• The SET HOLDLIST command restricts fields in HOLD and PCHOLD files to those
appearing in a request. That is, non-displaying fields in a request (those designated as
NOPRINT fields) are not included in the HOLD file. For details, see Controlling
Field Names in the HOLD Master File on page 11-16.

• The SET HOLDATTR command causes TITLE and ACCEPT attributes used in the
original Master File to be used in the HOLD Master File. For details, see Controlling
TITLE and ACCEPT Attributes in a HOLD Master File on page 11-20.

In addition, the SET HOLDSTAT command enables you to include comments and DBA
information in the HOLD Master File. For more information about SET HOLDSTAT,
see the Describing Data manual. For details about SET commands see the Developing
Applications manual.

Controlling Field Names in a HOLD Master File
When SET ASNAMES is set to ON or FOCUS, the literal specified in an AS phrase in a
report request is used as the field name in a HOLD Master File. This command also
controls how ACROSS fields are named in HOLD files.

Syntax How to Control Field Names in a HOLD Master File
SET ASNAMES = [ON|OFF|FOCUS]

where:
ON

Uses the literal specified in an AS phrase for the field name and controls the way
ACROSS fields are named in HOLD files of any format.

OFF

Does not use the literal specified in an AS phrase as a field name in HOLD files, or
affect the way ACROSS fields are named.

FOCUS

Uses the literal specified in an AS phrase as the field name and controls the way
ACROSS fields are named only in HOLD files in FOCUS format. This is the default
value.

 Controlling Attributes in HOLD Master Files

Creating Reports 11-15

Reference Usage Notes for Controlling Field Names in HOLD Files
If no AS phrase is specified for a field, the field name from the original Master File is
used. The TITLE attribute specified in the Master File will not be used unless SET
HOLDATTR was previously issued.

To ensure that fields referenced more than once in a request have unique field names in
the HOLD Master File, use SET ASNAMES.

• All characters are converted to uppercase.

• Special characters and blanks used in the AS phrase are preserved in the field name
that is created when SET ASNAMES is used. When you refer to these non-standard
field names in the newly created Master File, you must use single quotation marks
around the field name.

• Text specified in an AS phrase that contains more than 66 characters is truncated to
66 characters in the Master File.

• Aliases are not carried over into the HOLD Master File. A new set of aliases is
supplied automatically. These aliases are named E01 for the first field, E02 for the
second, and so forth.

• Duplicate field names may occur in the newly created Master File as a result of
truncation or the way AS phrases have been specified. In this case, refer to the fields
by their aliases (E01, E02, and so forth).

• When commas are used as delimiters to break lines in the column heading, only the
literal up to the first comma is used as the field name in the Master File. For
example,
PRINT COUNTRY AS 'PLACE,OF,ORIGIN'

produces the field name PLACE in the HOLD Master File.

• Unless SET ASNAMES=ON has been issued, field names exceeding 12 characters
are used as field names in the HOLD Master File.

• When ACROSS is used in a report request and the results are extracted to a HOLD
file, the columns generated by the ACROSS phrase all have the same field name in
the HOLD Master File. If SET ASNAMES is issued, each new column may have a
unique field name. This unique field name consists of the ASNAME value specified
in the request’s display command, concatenated to the beginning of the value of the
field used in the ACROSS phrase. If several field names have the same letters, this
approach will not work.

If an AS phrase is used for the fields in the ACROSS phrase, each new column will
have a field name composed of the literal in the AS phrase concatenated to the
beginning of the value of the first field used in the ACROSS phrase.

Saving and Reusing Report Output

11-16 Information Builders

Example Controlling Field Names in the HOLD Master File
In the following example, SET ASNAMES=ON causes the text in the AS phrase to be
used as field names in the HOLD1 Master File. The two fields in the HOLD1 Master
File, NATION and AUTOMOBILE, contain the data for COUNTRY and CAR.
SET ASNAMES=ON
TABLE FILE CAR
PRINT CAR AS 'AUTOMOBILE'
BY COUNTRY AS 'NATION'
ON TABLE HOLD AS HOLD1
END

The request produces the following Master File:
FILE=HOLD1 ,SUFFIX=FIX
SEGNAME=HOLD1, SEGTYPE=S01,$
FIELDNAME =NATION ,E01 ,A10 ,A12 ,$
FIELDNAME =AUTOMOBILE ,E02 ,A16 ,A16 ,$

Example Providing Unique Field Names With SET ASNAMES
The following request generates a HOLD Master File with one unique field name for
SALES and one for AVE.SALES. Both SALES and AVE.SALES would be named
SALES, had SET ASNAMES not been used.
SET ASNAMES=ON
TABLE FILE CAR
SUM SALES AND AVE.SALES AS 'AVERAGESALES'
BY CAR
ON TABLE HOLD AS HOLD2
END

The request produces the following Master File:
FILE=HOLD2 ,SUFFIX=FIX
SEGNAME=HOLD2, SEGTYPE=S01,$
FIELDNAME =CAR ,E01 ,A16 ,A16 ,$
FIELDNAME =SALES ,E02 ,I6 ,I04 ,$
FIELDNAME =AVERAGESALES ,E03 ,I6 ,I04 ,$

 Controlling Attributes in HOLD Master Files

Creating Reports 11-17

Example Using SET ASNAMES With the ACROSS Phrase
The following request produces a HOLD Master File with the literal CASH concatenated
to each value of COUNTRY:
SET ASNAMES=ON
TABLE FILE CAR
SUM SALES AS 'CASH'
ACROSS COUNTRY
ON TABLE HOLD AS HOLD3
END

The request produces the following Master File:
FILE=HOLD3 ,SUFFIX=FIX
SEGNAME=HOLD3, SEGTYPE=S01,$
FIELDNAME =CASHENGLAND ,E01 ,I6 ,I04 ,$
FIELDNAME =CASHFRANCE ,E02 ,I6 ,I04 ,$
FIELDNAME =CASHITALY ,E03 ,I6 ,I04 ,$
FIELDNAME =CASHJAPAN ,E04 ,I6 ,I04 ,$
FIELDNAME =CASHW GERMANY ,E05 ,I6 ,I04 ,$

Without the SET ASNAMES command, every field in the HOLD FILE would be named
COUNTRY.

To generate field names for ACROSS values that include only the field value, use the AS
phrase followed by two single quotation marks as follows:
SET ASNAMES=ON
TABLE FILE CAR
SUM SALES AS ''
ACROSS COUNTRY
ON TABLE HOLD AS HOLD4
END

The resulting Master File looks like this:
FILE=HOLD4 ,SUFFIX=FIX
SEGNAME=HOLD4
FIELDNAME =ENGLAND ,E01 ,I6 ,I04 ,$
FIELDNAME =FRANCE ,E02 ,I6 ,I04 ,$
FIELDNAME =ITALY ,E03 ,I6 ,I04 ,$
FIELDNAME =JAPAN ,E04 ,I6 ,I04 ,$
FIELDNAME =W GERMANY ,E05 ,I6 ,I04 ,$

Saving and Reusing Report Output

11-18 Information Builders

Controlling Fields in a HOLD Master File
You can use the SET HOLDLIST command to restrict fields in HOLD Master Files to
those appearing in a request.

Syntax How to Control Fields in a HOLD File
SET HOLDLIST = {PRINTONLY|ALL}

where:
PRINTONLY

Specifies that only those fields that would have appeared in the report are included in
the generated HOLD file. Non-displaying fields in a request (that is, those designated
as NOPRINT fields) are not included in the HOLD file.

ALL

Specifies that all display fields referenced in a request will appear in a HOLD file,
including calculated values. ALL is the default value. OLD may be used as a
synonym for ALL.

Note that SET HOLDLIST may also be issued from within a TABLE request. When used
with MATCH, SET HOLDLIST always behaves as if HOLDLIST is set to ALL.

Example Using HOLDLIST=ALL
When HOLDLIST is set to ALL, the following TABLE request produces a HOLD file
containing all specified fields, including NOPRINT fields and values calculated with the
COMPUTE command:
SET HOLDLIST=ALL

TABLE FILE CAR
PRINT CAR MODEL NOPRINT
COMPUTE TEMPSEATS=SEATS+1;
BY COUNTRY
ON TABLE HOLD
END

? HOLD

The result is:
DEFINITION OF HOLD FILE: HOLD
FIELDNAME ALIAS FORMAT

COUNTRY E01 A10
CAR E02 A16
MODEL E03 A24
SEATS E04 I3
TEMPSEATS E05 D12.2

 Controlling Attributes in HOLD Master Files

Creating Reports 11-19

Example Using HOLDLIST= PRINTONLY
When HOLDLIST is set to PRINTONLY, the following report request produces a HOLD
file containing only fields that would be displayed in report output:
SET HOLDLIST=PRINTONLY

TABLE FILE CAR
PRINT CAR MODEL NOPRINT
COMPUTE TEMPSEATS=SEATS+1;
BY COUNTRY
ON TABLE HOLD
END

? HOLD

The output is:
DEFINITION OF HOLD FILE: HOLD
FIELDNAME ALIAS FORMAT

COUNTRY E01 A10
CAR E02 A16
TEMPSEATS E03 D12.2

Controlling the TITLE and ACCEPT Attributes in the HOLD Master File
The SET HOLDATTR command controls whether the TITLE and ACCEPT attributes in
the original Master File are propagated to the HOLD Master File. SET HOLDATTR does
not affect the way fields are named in the HOLD Master File.

Note that if a field in a data source does not have the TITLE attribute specified in the
Master File, but there is an AS phrase specified for the field in a report request, the
corresponding field in the HOLD file will be named according to the AS phrase.

Syntax How to Control TITLE and ACCEPT Attributes
SET HOLDATTR =[ON|OFF|FOCUS]

where:
ON

Uses the TITLE attribute as specified in the original Master File in HOLD files in
any format. The ACCEPT attribute will be propagated to the HOLD Master File only
for HOLD files in FOCUS format.

OFF

Does not use the TITLE or ACCEPT attributes from the original Master File in the
HOLD Master File.

FOCUS

Uses the TITLE and ACCEPT attributes only for HOLD files in FOCUS format.
This is the default.

Saving and Reusing Report Output

11-20 Information Builders

Example Controlling TITLE and ACCEPT Attributes in a HOLD Master File
In this example, the Master File for the CAR data source specifies TITLE and ACCEPT
attributes:
FILENAME=CAR2, SUFFIX=FOC
SEGNAME=ORIGIN, SEGTYPE=S1
 FIELDNAME =COUNTRY, COUNTRY, A10, TITLE='COUNTRY OF ORIGIN',
 ACCEPT='CANADA' OR 'ENGLAND' OR 'FRANCE' OR 'ITALY' OR
 'JAPAN' OR 'W GERMANY',
 FIELDTYPE=I,$
SEGNAME=COMP, SEGTYPE=S1, PARENT=ORIGIN
 FIELDNAME=CAR, CARS, A16, TITLE='NAME OF CAR',$
.
.
.

Using SET HOLDATTR=FOCUS, the following request
SET HOLDATTR = FOCUS
TABLE FILE CAR2
PRINT CAR
BY COUNTRY ON TABLE HOLD FORMAT FOCUS AS HOLD5
END

will produce this HOLD Master File:
FILE=HOLD5 ,SUFFIX=FOC
SEGNAME=SEG01 ,SEGTYPE=S02
FIELDNAME =COUNTRY ,E01 ,A10
 TITLE='COUNTRY OF ORIGIN',
 ACCEPT=CANADA ENGLAND FRANCE ITALY JAPAN 'W GERMANY',$
FIELDNAME =FOCLIST ,E02 ,I5 ,$
FIELDNAME =CAR ,E03 ,A16 ,
 TITLE='NAME OF CAR' ,$

 Keyed Retrieval From HOLD Files

Creating Reports 11-21

Keyed Retrieval From HOLD Files
Keyed retrieval is supported with any single segment SUFFIX=FIX data source or
HOLD file that is sorted based on the key. Keyed retrieval can reduce the IOs incurred in
reading extract files. The performance gains are accomplished by using the SEGTYPE
parameter in the Master File to identify which fields comprise the logical key for
sequential files.

• With FIXRETRIEVE=ON, the retrieval process stops when an equality or range test
on the key holds true.

• With FIXRETRIEVE=OFF, all of the records from the sequential file are read and
screening conditions are applied when creating the final report.

The ON TABLE HOLD command allows you to read one of the many supported data
sources and create extract files. You can then join these fixed format sequential files to
other data sources to narrow your view of the data. The concept of a logical key in a fixed
format file permits qualified keyed searches for all records that match IF/WHERE tests
for the first n KEY fields identified by the SEGTYPE attribute. Retrieval stops when the
screening test detects values greater than those specified in the IF/WHERE test.

When a Master File is created for the extract file, a SEGTYPE of either Sn or SHn is
added, based on the BY fields in the request. For example, PRINT field BY field creates a
HOLD Master File with SEGTYPE=S1. Using BY HIGHEST field creates a Master with
SEGTYPE=SH1.

Syntax How to Control Keyed Retrieval for a HOLD File
SET FIXRET[RIEVE] = {ON|OFF}

where:
ON

Enables keyed retrieval. ON is the default setting.
OFF

Disables keyed retrieval.

Saving and Reusing Report Output

11-22 Information Builders

Example Master File for Keyed Retrieval From a HOLD File
The following Master File describes a fixed format sequential file with sorted values of
MYKEY in ascending order from 1 to 100,000:
FILE=SORTED,SUFFIX=FIX,$
SEGNAME=ONE,SEGTYPE=S1,$
 FIELD=MYKEY,MK,I8,I8,$
 FIELD=MFIELD,MF,A10,A10,$

TABLE FILE SORTED
 PRINT MFIELD
 WHERE MYKEY EQ 100
END

In this instance, with FIXRETRIEVE=ON, retrieval stops when MYKEY reaches 101,
vastly reducing the potential number of IOs, as only 101 records are read out of a
possible 100,000 records.

Example Selection Criteria for Keyed Retrieval From an Extract File
Selection criteria that include lists of equality values use keyed retrieval. For example,
{IF|WHERE} MYKEY EQ x OR y OR z

IF and WHERE tests can also include range tests. For example,
{IF|WHERE} MYKEY IS-FROM x TO y

The maximum number of vertical (BY) sort fields remains 32.

In using this feature, keep in mind that when adding unsorted records to a sorted HOLD
file, out of sequence records will not be retrieved. For example, suppose that a sorted file
contains the following three records
Key

1 1200

2 2340

3 4875

and you add the following record at the bottom of the file:
1 1620

With FIXRETRIEVE=ON, the new record with a key value of 1 would be omitted, as
retrieval would stop as soon as a key value of 2 was encountered.

 Creating SAVE and SAVB Files

Creating Reports 11-23

Creating SAVE and SAVB Files
The SAVE command, by default, captures report output in ALPHA format as a simple
sequential data source, without headings or subtotals. However, you can specify a variety
of other formats for SAVE files, which are compatible with many software products. For
example, you can specify SAVE formats to display report output in a Web page, a text
document, a spreadsheet or word processing application, or to be used as input to other
programming languages. For a list of supported formats see Choosing Output File
Formats on page 11-26.
Regardless of format, the SAVE command does not create a Master File.

The SAVB command is a variation on the SAVE command. SAVB creates a data source
without a Master File, but numeric fields are stored in BINARY format. You can use the
SAVB file as input to a variety of applications. SAVB output is the same as the default
output created by the HOLD command.

Syntax How to Create a SAVE File
There are three ways to extract data to a SAVE file. In a report request, the syntax is
ON TABLE SAVE [AS filename] [FORMAT fmt] [MISSING {ON|OFF}]

or
save_field SAVE [AS filename] [FORMAT fmt] [MISSING {ON|OFF}]

At the command line or in a stored procedure, issue the SAVE command with
appropriate options after the report is displayed.
The syntax is
SAVE [AS filename][FORMAT fmt][MISSING {ON|OFF}]

where:
save_field

Is the name of the last field in the request.
AS filename

Specifies a name for the SAVE file. If you do not specify a file name, SAVE is used
as the default name. Since each subsequent SAVE command overwrites the previous
SAVE file, it is useful practice to code a distinct file name in each request to direct
the extracted data to a separate file, thereby preventing it from being overwritten by
the next SAVE command.

Saving and Reusing Report Output

11-24 Information Builders

FORMAT fmt

Specifies the format of the SAVE file. The default format is ALPHA.

• To display as a Web page, choose:
HTML

This format is supported through the Web Interface.

• To use in a text document:
ALPHA, PDF, WP, Text

• To use in a spreadsheet application:
DIF, EXCEL, LOTUS, SYLK

For details about particular formats, see Choosing Output File Formats on page
11-26.

MISSING

Ensures that fields with the MISSING attribute set to ON will be carried over into
the SAVE file. The default is MISSING OFF. For related information see Chapter
12, Handling Records With Missing Field Values.

Example Creating a SAVE File
TABLE FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
 BY DEPARTMENT
 ON TABLE SAVE
 END

A description of the ALPHA (default SAVE format) file layout is displayed after the
records are retrieved.

The output is:

 Creating SAVE and SAVB Files

Creating Reports 11-25

Syntax How to Create a SAVB File
There are three ways to create a SAVB file. In a TABLE request, the syntax is
ON TABLE SAVB [AS filename] [MISSING {ON|OFF}]

or
save_field SAVB [AS filename] [MISSING {ON|OFF}]

or

At the command line, issue SAVB with appropriate options after the report is displayed.
The syntax is
SAVB [AS filename][MISSING {ON|OFF}]

where:
save_field

Is the name of the last field in the request.
AS filename

Specifies a name for the SAVB file. If you do not specify a file name, SAVB is used
as the default name. Since each subsequent SAVB command overwrites the previous
SAVB file, it is useful practice to code a distinct file name in each request to direct
the extracted data to a separate file, thereby preventing it from being overwritten by
the next SAVB command.

MISSING

Ensures that fields with the MISSING attribute set to ON will be carried over into
the SAVB file. The default is MISSING OFF. For related information, see Chapter
12, Handling Records With Missing Field Values.

Saving and Reusing Report Output

11-26 Information Builders

Example Creating a SAVB File
TABLE FILE SALES
PRINT PROD_CODE AND AREA
BY DATE
WHERE CITY IS 'STAMFORD' OR 'UNIONDALE'
ON TABLE SAVB
END

A description of the BINARY file is displayed after the records are retrieved.

The output is:

Choosing Output File Formats
You can select from a wide range of output formats to preserve your report output for use
in any of the following ways:

• To display as or in a Web page, as a printed document, or in a text document.

• To process in another application, such as a spreadsheet, a database, a word
processor, or a 3GL program.

• To send to another location, such as a browser or PC.

• To extract a subset of the original data source in order to generate multi-step reports.

For details on each of the supported formats, including the commands that support them
(HOLD, PCHOLD, SAVE) and the operating environments in which they are available,
see the corresponding reference topics.

 Choosing Output File Formats

Creating Reports 11-27

Reference FORMAT ALPHA
Description:
Saves report output as fixed-format character data. When created as a HOLD file, a
corresponding Master File is also created.

ALPHA is the default SAVE format.
Text fields are supported in ALPHA-formatted files. See Rules for Text Fields in Output
Files on page 11-40.

Use:
For display in a text document; for further reporting in FOCUS or WebFOCUS; as a
transaction file for modifying a data source.

Supported with the commands:
HOLD; PCHOLD; SAVE

The PCHOLD variation transfers the data and the Master File from a Web server to a
browser.

Available in:
WebFOCUS; FOCUS for S/390.

Reference FORMAT BINARY
Description:
Saves report data and stores numeric fields as binary numbers; also creates a Master File.
BINARY is the default format for HOLD files.

Use:
For further reporting in FOCUS or WebFOCUS; as transaction file for modifying a data
source.

Supported with the commands:
HOLD; PCHOLD

The PCHOLD variation transfers the data from a Web server to a browser.

Available in:
WebFOCUS; FOCUS for S/390

Saving and Reusing Report Output

11-28 Information Builders

Reference FORMAT COMMA
Description:
Saves the data values as a variable-length text file with fields separated by commas and
with character values enclosed in double quotation marks. All blanks within fields are
retained. This format is the industry standard comma-delimited format.

This format also includes a built-in safety feature, which allows embedded quotes within
text fields. This feature inserts a second double quote (“) adjacent to the existing one. For
example, if you input Joe “Smitty” Smith, the output will be Joe ““Smitty”“ Smith.

The extension or file type for this format is PRN. This format type does not create a
Master File.

Note:

• Smart date fields and dates formatted as I or P fields with date format options are
treated as numeric and are not enclosed in double quotation marks in the output file.
Dates formatted as alphanumeric fields with date format options are treated as
alphanumeric and enclosed in double quotation marks.

• Continental decimal notation (CDN=ON|SPACE|QUOTE) is not supported. A
comma within a number would be interpreted as two separate columns by a
destination application such as Microsoft Access.

Use:
For further processing in a database application. This format type can be imported into
applications such as Excel or Lotus.

Supported with the commands:
HOLD, SAVE

Available in:
WebFOCUS; FOCUS for S/390

 Choosing Output File Formats

Creating Reports 11-29

Reference FORMAT COM
Description:
Saves the data values as a variable-length text file with fields separated by commas and
with character values enclosed in double quotation marks. Leading blanks are removed
from numeric fields and trailing blanks are removed from character fields. To issue a
request against this data source, the setting PCOMMA=ON is required.

This format also includes a built-in safety feature, which allows embedded quotes within
text fields. This feature inserts a second double quote (“) adjacent to the existing one. For
example, if you input Joe “Smitty” Smith, the output will be Joe ““Smitty”“ Smith.

The extension or file type for this format is CSV. A Master File is created for this format
type when the command used to create the output file is HOLD. The SUFFIX in the
generated Master File is COM.

Note:

• Smart date fields and dates formatted as I or P fields with date format options are
treated as numeric and are not enclosed in double quotation marks in the output file.
Dates formatted as alphanumeric fields with date format options are treated as
alphanumeric and enclosed in double quotation marks.

• Continental decimal notation (CDN=ON|SPACE|QUOTE) is not supported. A
comma within a number would be interpreted as two separate columns by a
destination application such as Microsoft Access.

Use:
For further processing in a database application. This format type can be imported into
applications such as Excel or Lotus.

Supported with the commands:
HOLD, SAVE

Available in:
FOCUS for S/390

Saving and Reusing Report Output

11-30 Information Builders

Reference FORMAT COMT
Description:
Saves the column headings in the first row of the output file. It produces a variable-length
text file with fields separated by commas and with character values enclosed in double
quotation marks. Leading blanks are removed from numeric fields and trailing blanks are
removed from character fields. This format is required by certain software packages such
as Microsoft Access.

This format also includes a built-in safety feature, which allows embedded quotes within
text fields. This feature inserts a second double quote (“) adjacent to the existing one. For
example, if you input Joe “Smitty” Smith, the output will be Joe ““Smitty”“ Smith.

The extension or file type for this format is CSV. A Master File is created for this format
type when the command used to create the output file is HOLD. The SUFFIX in the
generated Master File is COMT.

Note:

• Smart date fields and dates formatted as I or P fields with date format options are
treated as numeric and are not enclosed in double quotation marks in the output file.
Dates formatted as alphanumeric fields with date format options are treated as
alphanumeric and enclosed in double quotation marks.

• Continental decimal notation (CDN=ON|SPACE|QUOTE) is not supported. A
comma within a number would be interpreted as two separate columns by a
destination application such as Microsoft Access.

Use:
For further processing in a database application. This format type can be imported into
applications such as Excel or Lotus.

Supported with the commands:
HOLD, SAVE

Available in:
FOCUS for S/390

Reference FORMAT DB2
Description:
Creates a DB2 table, if you have the DB2 Data Adapter and permission to create tables.

Use:
For further processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390.

 Choosing Output File Formats

Creating Reports 11-31

Reference FORMAT DIF
Description:
Saves report data and field headings and creates a character file that can be easily
imported into most spreadsheet packages.

Note: Microsoft Excel SR-1 is no longer supported for HOLD FORMAT DIF. To open
these reports, use either Microsoft Excel SR-2 or Microsoft Excel 2000.

Use:
For display or processing in a spreadsheet application.

Supported with the commands:
HOLD, PCHOLD, SAVE

The PCHOLD variation transfers the data from a Web server to a browser.

Available in:
WebFOCUS; FOCUS for S/390.

Reference FORMAT EXCEL
Description:
Captures report output as a Microsoft Excel spreadsheet file, including data and column
titles, but without report headings, footings, subheadings, or subfootings. If the report
request contains an ACROSS phrase and specifies FORMAT EXCEL, column titles are
not included in the output.

Text fields are not supported with HOLD FORMAT EXCEL.

Note: Microsoft Excel SR-1 is no longer supported for HOLD FORMAT EXCEL. To
open these reports, use either Microsoft Excel SR-2 or Microsoft Excel 2000.

Use:
For display or processing in a spreadsheet application.

Supported with the commands:
HOLD, PCHOLD, SAVE

Available in:
WebFOCUS; FOCUS for S/390.

In FOCUS for S/390, the recommended transfer mechanism is FTP in binary mode. In
CMS, the file type of the resulting file is XLS. On a PC, the extension should be .xls.

Saving and Reusing Report Output

11-32 Information Builders

Reference FORMAT FOCUS
Description:
Creates a FOCUS data source. Four files result: a HOLD data file, a HOLD Master File,
and two work files. For detailed information see Holding Report Output in FOCUS
Format on page 11-9.

Text fields are supported for FOCUS output files. See Rules for Text Fields in Output
Files on page 11-40.

Use:
For further processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390.

Reference FORMAT FUSION
Description:
Captures the report data and creates a Fusion multi-dimensional data source.

You must either specify the name of an Access File that supplies the name of the Fusion
data source or supply the name of the data source in the HOLD command as follows:
[ACCESS FILE filename|DATASET fully-qualified_data_source_name]
 [INDEX field 1..., fieldn]

Requires the parameter setting MASTER=NEW.

Use:
For further processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390.

Reference FORMAT HTML
Description:
Creates a complete HTML document that can be viewed in a Web browser.

The PCHOLD variation transfers the data from a Web server to a browser.

Use:
For display as a Web page.

Supported with the commands:
HOLD, PCHOLD, SAVE

Available in:
WebFOCUS; FOCUS for S/390 as a feature of the Web Interface for FOCUS.

 Choosing Output File Formats

Creating Reports 11-33

Reference FORMAT HTMTABLE
Description:
Creates an output file that contains only an HTML table. The output produced is not a
complete HTML document, however, the file can be included in another HTML
document using the Dialogue Manager command -HTMLFORM. For details see the
documentation on Dialogue Manager in the Developing Applications manual.

Note: When issuing HOLD AS name FORMAT HTMTABLE, you must specify a
different name than the .html file name used in the -HTMLFORM name.

Use:
For embedding reports and graphs in an existing HTML document.

Supported with the commands:
HOLD, PCHOLD, SAVE

The PCHOLD variation also transfers the data from a Web server to a browser.

Available in:
WebFOCUS; FOCUS for S/390 as a feature of the Web Interface for FOCUS.

Reference FORMAT INGRES
Description:
Creates an Ingres table, if you have the Ingres Data Adapter and permission to create
tables.

Use:
For further processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390 when used as a client to iWay.

Reference FORMAT INTERNAL
Description:
Saves report output without padding the values of integer and packed fields. For details
see Saving Report Output in INTERNAL Format on page 11-42.

Use:
For accurate processing by 3GL programs.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390.

Saving and Reusing Report Output

11-34 Information Builders

Reference FORMAT LOTUS
Description:
Captures all the columns of the report in a character file that LOTUS 1-2-3 can then
import. All alphanumeric fields are enclosed in quotation marks. Columns are separated
by commas.

Use:
For display and processing in a spreadsheet application.

Supported with the commands:
HOLD, PCHOLD, SAVE (WebFOCUS browser version only)

Available in:
WebFOCUS; FOCUS for S/390.

In VM/CMS, the LOTUS file has a file name of PRN and allocates a scratch data set to
the file HOLD.

Reference FORMAT PDF
Description:
Saves the report output in Adobe’s Portable Document Format, which allows precise
placement of output (that is, all formatting options such as headings, footings, and titles)
correctly aligned on the physical page, so the report looks exactly as it would when
printed.

Use:
For display as a printed document.

Supported with the commands:
HOLD, PCHOLD, SAVE (WebFOCUS only)

Available in:
WebFOCUS; FOCUS for S/390 as a feature of the Web Interface for FOCUS.

Reference FORMAT POSTSCRIPT (PS)
Description:
Creates an output file in PostScript format, which supports headings, footings, and totals.

PS is an abbreviation for POSTSCRIPT. In CMS, the file type is PS.

PS also supports: Outline fonts, ISO Latin font encoding, and EPS image format.

Use:
For display as a printed document.

Supported with the command:
HOLD, PCHOLD

Available in:
WebFOCUS (browser version); FOCUS for S/390.

 Choosing Output File Formats

Creating Reports 11-35

Reference FORMAT REDBRICK
Description:
Creates a Red Brick table, if you have the Redbrick Data Adapter and permission to
create tables.

Use:
For further processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390 when used as a client to iWay.

Reference FORMAT SQL
Description:
Creates an SQL/DS table, if you have the SQL/DS Data Adapter and permission to create
tables.

Use:
For processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390.

Reference FORMAT SQLDBC
Description:
Creates a Teradata table, if you have the Teradata Data Adapter and permission to create
tables.

Use:
For processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390.

Saving and Reusing Report Output

11-36 Information Builders

Reference FORMAT SQLINF
Description:
Creates an Informix table, if you have the Informix Data Adapter and permission to
create tables.

Use:
For processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390 when used as a client to iWay.

Reference FORMAT SQLMSS
Description:
Creates a Microsoft SQL Server table, if you have the Microsoft SQL Data Adapter and
permission to create tables.

Use:
For processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390 when used as a client to iWay.

Reference FORMAT SQLODBC
Description:
Creates an SQLODBC table if you have the current ODBC Data Adapter and permission
to create tables.

Use:
For processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390 when used as a client to iWay.

 Choosing Output File Formats

Creating Reports 11-37

Reference FORMAT SQLORA
Description:
Creates an Oracle table, if you have the Oracle Data Adapter and permission to create
tables.

Use:
For processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390.

Reference FORMAT SQLSYB
Description:
Creates a Sybase table, if you have the Sybase Data Adapter and permission to create
tables.

Use:
For processing in a database application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390 when used as a client to iWay.

Reference FORMAT SYLK
Description:
Captures all the columns of the report request in a character file for Microsoft’s
spreadsheet program Multiplan. The generated file cannot have more than 9,999 rows.

Use:
For display and processing in a spreadsheet application.

Supported with the command:
HOLD

Available in:
WebFOCUS; FOCUS for S/390.

Saving and Reusing Report Output

11-38 Information Builders

Reference FORMAT TABT
Description:
Creates an output file in tab-delimited format that includes column headings in the first
row. The TABT format includes a built-in safety feature, which allows embedded quotes
within text fields. This feature inserts a second double quote (“) adjacent to the existing
one. For example, if you input Joe “Smitty” Smith, the output will be Joe ““Smitty”“
Smith. The TABT format also includes the following features:

• The first row contains field names.

• All trailing blanks are stripped from alpha[An] fields.

• All leading blanks are stripped from numeric [/Dx.y, /Fx.y, /Px.y, and /In] fields.

• There is a 32K record length limit in the output file.

• A Master File is created when the command used to create the output file is HOLD.
The Master File behaves exactly as in FORMAT ALPHA, except for the inclusion of
double quotes.

Note: Blank field names display as blank column titles. This may result in an error when
attempting to use the file as input to various applications.

Use:
For importing data to Windows-based applications such as MS Access and Excel.

Supported with the command:
HOLD, SAVE

Available in:
WebFOCUS; FOCUS for S/390

Reference FORMAT WP
Description:
Captures the entire report output—including headings, footings, and subtotals—and
creates a text file that can be easily incorporated into most word processing packages.

Text fields are supported in WP format. See Rules for Text Fields in Output Files on page
11-40.

To control whether a carriage control character is included in column 1 of each page of
the report output use the following syntax:
[ON TABLE] HOLD AS filename FORMAT WP [CC|NOCC]

NOCC excludes carriage control characters. The position reserved for those characters
remains in the file, but is blank. CC includes carriage control characters and, in MVS,
creates the HOLD file with RECFM VBA. To include page control information in the
WP file, you can also specify the TABPAGENO option in a heading or the SET
PAGE=OFF command. The character 1 in the column 1 indicates the start of a new page.

 Choosing Output File Formats

Creating Reports 11-39

The following rules summarize FORMAT WP carriage control options:

• The CC option always inserts the carriage control character.

• The NOCC option always omits the carriage control character.

• When you issue HOLD FORMAT WP without the CC or NOCC option:

SET PAGE NUM=OFF and SET PAGE NUM=TOP always insert the carriage
control character.

SET PAGE NUM=NOPAGE always omits the carriage control character.

SET PAGE NUM=ON inserts the carriage control character if TABPAGENO is
included in the heading and omits the carriage control character if TABPAGENO is
not included in the heading.

Tip:
HOLD FORMAT WP does not change the number of lines per page. If you wish to change
the number of lines per page, issue one or a combination of the commands SET
PRINT=OFFLINE, SET SCREEN=PAPER, or SET SCREEN=OFF.

In MVS, the WP file is created with a record format of VB when the carriage control
character is omitted and with a record format of VBA when the carriage control character
is inserted.

The maximum output for HOLD FORMAT WP is 248 characters.
FORMAT WP retains headings, footings, and subtotals.

Use:
For display in a text document

Supported with the commands:
HOLD, PCHOLD, SAVE

Available in:
WebFOCUS; FOCUS for S/390.

Saving and Reusing Report Output

11-40 Information Builders

Reference Rules for Text Fields in Output Files
Text fields can be used in HOLD and SAVE files that have the following formats:
ALPHA, WP, and FOCUS.

• You can include as many text fields in the file as needed. However, you must specify
text fields after non-text fields in the display list (PRINT..., SUM..., and so forth).

• You can specify only one text field in the display list, and no non-text fields, in a
request that includes an ACROSS phrase.

The following rules apply to missing data for text fields in HOLD and SAVE files:

• A blank line is valid data. An end-of-text mark will indicate the end of the field.

• If there is no text for a field, a single period (.) followed by blanks will appear in the
HOLD or SAVE file.

• If MISSING=ON during data extraction, a period (.) is written out to the HOLD or
SAVE file.

• If MISSING=OFF during data extraction, a blank is written out to the HOLD or
SAVE file.

For details see Chapter 12, Handling Records With Missing Field Values.

In environments that support FIXFORM, due to limitations in the use of text fields with
FIXFORM, the following restrictions apply:

• When you use the command FIXFORM FROM HOLD, the HOLD file may not
contain more than one text field and the text field must be the last field in the Master
File.

When HOLD files are read using FIXFORM, the interpretation of missing text depends
on whether the field’s designation is MISSING=ON in the Master File, or conditional (C)
in the FIXFORM format description, or some combination of the two.

 Choosing Output File Formats

Creating Reports 11-41

Example Applying Text Field Rules in HOLD Files
The following request extracts data in the HOLD file CRSEHOLD:
TABLE FILE COURSES
PRINT COURSE_CODE DESCRIPTION
ON TABLE HOLD AS CRSEHOLD
END

TABLE FILE CRSEHOLD
PRINT *
END

The output is:
101 This course provides the DP professional with the skills
needed to create, maintain, and report from FOCUS databases.
%$
200 Anyone responsible for designing FOCUS databases will benefit
from this course, which provides the skills needed to design large,
complex databases and tune existing ones.
%$
201 This is a course in FOCUS efficiencies.
%$

The first record of the HOLD file contains data for COURSE_CODE 101, followed by
the DESCRIPTION field. The data for this text field extends into the next record,
beginning at Column 1, and continues to the end of the HOLD record. It is immediately
followed by the end-of-text mark (%$) on a line by itself. The next record contains new
data for the next COURSE_CODE and DESCRIPTION.

If the report uses two text fields, the first record will contain data for the first text field.
After the end-of-text mark is written, the next text field will be displayed. This formatting
applies to all file formats except WP, in which the report is saved exactly as it appears on
the screen.

Saving and Reusing Report Output

11-42 Information Builders

Saving Report Output in INTERNAL Format
HOLD files pad binary integer and packed decimal data values to a full word boundary.
For example, a three-digit integer field (I3), is stored as four bytes in a HOLD file. In
order for third generation programs, such as COBOL, to be able to read HOLD files in an
exact manner, you may need to save the fields in the HOLD file without any padding.

To suppress field padding in the HOLD file, do the following in the report request:

• Specify formats for the integer and packed fields that should not be padded (in order
to override the ACTUAL formats used for the corresponding USAGE formats
specified in the Master File).

• Specify HOLD FORMAT INTERNAL for the report output.

Syntax How to Suppress Field Padding in HOLD Files
SET HOLDLIST = PRINTONLY
TABLE FILE filename
display_command fieldname/[In|Pn.d]
.
.
ON TABLE HOLD AS name FORMAT INTERNAL
END

where:
PRINTONLY

Causes your report request to propagate the HOLD file with only the specified fields
displaying in the report output. If you do not issue this setting, an extra field
containing the padded field length is included in the HOLD file. For details, see
Controlling Fields in a HOLD Master File on page 11-18.

fieldname/[In|Pn.d]

Specifies formats for integer and packed fields for which you wish to suppress
padding. These formats will override the ACTUAL formats used for the display
formats in the Master File. For details, see Usage Notes for Suppressing Padded
Fields in HOLD Files on page 11-43.
Note that floating point double-precision (D), floating pointing point single-precision
(F), and Alphanumeric (A) fields are not affected by HOLD FORMAT INTERNAL.

FORMAT INTERNAL

Saves the HOLD file without padding for specified integer and packed decimal
fields.

For an illustration, see Creating a HOLD File With HOLD FORMAT INTERNAL on page
11-1.

 Saving Report Output in INTERNAL Format

Creating Reports 11-43

Reference Usage Notes for Suppressing Padded Fields in HOLD Files
• Integer fields (I) of one, two, three, or four bytes produce four byte integers without

HOLD FORMAT INTERNAL.

• For packed decimal fields (Pn.d), n is the total number of digits and d is the number
of digits to the right of the decimal point. The number of bytes is derived by dividing
n by 2 and adding 1.

The syntax is
bytes = INT (n/2) + 1

where:
INT (n/2)

Is the greatest integer after dividing by 2.

• HOLD FORMAT INTERNAL does not affect floating point double precision (D)
and floating point single precision (F) fields. D remains at eight bytes and F at four
bytes.

• Alphanumeric fields automatically inherit their length from their source Master File,
and are not padded to a full word boundary. Therefore, they are also not affected by
HOLD FORMAT INTERNAL.

• If a format override is not large enough to contain the data values, the values are
truncated. Truncation may cause the data in the HOLD file to be incorrect in the case
of an integer. For packed data and integers, truncation occurs for the high order
digits so the remaining low order digits will resemble the digits from the correct
values.

To avoid incorrect results, be sure that the format you specify is large enough to
contain the data values or the values will be incorrect.

Example Creating a HOLD File Without HOLD FORMAT INTERNAL
In this example, the values of ACTUAL for RETAIL_COST, DEALER_COST, and
SEATS are all padded to a full word in binary.
TABLE FILE CAR
PRINT CAR COUNTRY RETAIL_COST DEALER_COST SEATS
ON TABLE HOLD AS DJG
END

?DJG

The request creates and displays the following Master File:
FILE=DJG ,SUFFIX=FIX
SEGNAME=DJG ,SEGTYPE=S0
FIELDNAME =CAR ,E01 ,A16 ,A16 ,$
FIELDNAME =COUNTRY ,E02 ,A10 ,A12 ,$
FIELDNAME =RETAIL_COST ,E03 ,D7 ,D08 ,$
FIELDNAME =DEALER_COST ,E04 ,D7 ,D08 ,$
FIELDNAME =SEATS ,E05 ,I3 ,I04 ,$

Saving and Reusing Report Output

11-44 Information Builders

Example Creating a HOLD File With HOLD FORMAT INTERNAL
In this example, DEALER_COST and RETAIL_COST are defined in the Master File as
D fields, but the request overrides RETAIL_COST as an I2 field and DEALER_COST as
a P3 field.
SET HOLDLIST=PRINTONLY
TABLE FILE CAR
PRINT CAR COUNTRY RETAIL_COST/I2 DEALER_COST/P3 SEATS/I1
ON TABLE HOLD AS HINT3 FORMAT INTERNAL
END

?HINT3

This creates and displays the following Master File:
FILE=HINT3 ,SUFFIX=FIX
SEGNAME=HINT3 ,SEGTYPE=S0
FIELDNAME =CAR ,E01 ,A16 ,A16 ,$
FIELDNAME =COUNTRY ,E02 ,A10 ,A10 ,$
FIELDNAME =RETAIL_COST ,E03 ,I6 ,I02 ,$
FIELDNAME =DEALER_COST ,E04 ,P4 ,P02 ,$
FIELDNAME =SEATS ,E05 ,I4 ,I01 ,$

The values of ACTUAL for the overridden fields are I2, P2, and I1. DEALER_COST has
an ACTUAL of P2 because the format override, P3, means 3 display digits that can be
stored in 2 actual digits.

Creating Reports 12-1

CHAPTER 12

Handling Records With Missing Field Values

Topics:
• Irrelevant Report Data

• Missing Field Values

• Handling a Missing Segment Instance

• Setting the NODATA Character String

Missing data is defined as data that is missing from a report
because it is not relevant or because it does not exist in the data
source. Report output that involves averaging and counting
calculations or the display of parent segment instances may be
affected by missing data. Data can be missing from reports and
calculations for the following reasons:

• Data is not relevant to a particular row and column in a
report. See Irrelevant Report Data on page 12-2.

• A field in a segment instance does not have a data value.
See Missing Field Values on page 12-3.

• A parent segment instance does not have child instances
(missing segment instances). See Handling a Missing
Segment Instance on page 12-13.

Note: To run the examples in this topic, you must run the stored
procedures EMPMISS and SALEMISS to add missing data to
the EMPLOYEE and SALES data sources, respectively.

Handling Records With Missing Field Values

12-2 Information Builders

Irrelevant Report Data
Data can be missing from a report row or column because it is not relevant. The missing
or inapplicable value is indicated by the NODATA default character, a period (.).

Tip:
You may specify a more meaningful NODATA value by issuing the SET NODATA
command (see Setting the NODATA Character String on page 12-20).

Example Irrelevant Report Data
The following request shows how the default NODATA character displays missing data
in a report.
TABLE FILE EMPLOYEE
PRINT SALARY
BY LAST_NAME
BY FIRST_NAME
ACROSS DEPARTMENT
END

The output is:

The salary for an employee working in the production department displays in the
PRODUCTION column; the salary for an employee working in the MIS department
displays in that column. The corresponding value in the PRODUCTION or MIS column,
respectively, is missing because the salary displays only under the department where the
person is employed.

 Missing Field Values

Creating Reports 12-3

Missing Field Values
Missing values within segment instances occur when the instances exist, but some fields
in the instances lack values.

When fields in instances lack values, numeric fields are assigned the value of 0, and
alphanumeric fields the value of blank. These default values appear in reports and are
used in all calculations performed by the SUM and COUNT display commands, DEFINE
commands, and prefix operators such as MAX. and AVE.

To prevent the use of these default values in calculations (which might then give
erroneous results), you can add the MISSING attribute to the field declaration in the
Master File, for either a real or a virtual field. When the MISSING attribute is set to ON
the missing values are marked with a special internal code to distinguish them from
blanks or zeros, and the missing values are ignored in calculations. In reports, the internal
code is represented by the SET NODATA value a period (.), by default. See Setting the
NODATA Character String on page 12-20.

For example, missing data for a field in a segment instance may occur when the data
values are unknown, as in the following scenario. Suppose that the employees recorded in
the EMPLOYEE data source are due for a pay raise by a certain date, but the amount of
the raise has not been determined. The company enters the date for each employee into
the data source without the salary amounts; the salaries will be entered later. Each date is
an individual instance in the salary history segment, but the new salary for each date
instance is missing. Suppose further that a report request averages the SALARY field
(SUM AVE.SALARY). The accuracy of the resulting average depends on whether the
missing values for the SALARY field are treated as zeros (MISSING=OFF) or as internal
codes (MISSING=ON).

Example Counting With Missing Values
Suppose the CURR_SAL field appears in 12 segment instances. In three of those
instances, the field was given no value. Nevertheless, the display command
COUNT CURR_SAL

counts 12 occurrences of the CURR_SAL field. This occurs because the MISSING
attribute is OFF by default, so the missing values are included in the count. If you wanted
to exclude the missing data from the count, you could set MISSING ON.

Handling Records With Missing Field Values

12-4 Information Builders

Example Averaging With Missing Values
Suppose you had the following records of data for a field:
.
.
1
3

The numeric values in the first two records are missing (indicated by the periods); the last
two records have values of 1 and 3. If you average these fields without the MISSING
attribute (MISSING OFF), a value of 0 is supplied for the two records that are missing
values. Thus, the average of the records is (0+0+1+3)/4, or 1. If you use the MISSING
ON attribute, the two missing values are ignored, calculating the average as (1+3)/2, or 2.

MISSING Attribute in the Master File
In some applications, the default values (blanks and zeros) may represent valid data
rather than the absence of information. However, if this is not the case, you can include
the MISSING attribute after the field format in the Master File declaration for the field
with the missing values. The MISSING attribute can be used with an actual field in the
data source or a virtual field that you are defining in the Master File.

For example, the following field declaration specifies the MISSING attribute for the
RETURNS field:
FIELDNAME=RETURNS, ALIAS=RTN, FORMAT=I4, MISSING=ON,$

The next declaration specifies the MISSING attribute for a virtual field called PROFIT:
DEFINE PROFIT/D7 MISSING ON NEEDS SOME DATA = RETAIL_COST - DEALER_COST; $

To ensure that missing values are handled properly for virtual fields, you can set the
MISSING attribute ON for the virtual field in the DEFINE command, and specify
whether you want to apply the calculation if some or all values are missing. For related
information on the SOME and ALL phrases, see How to Specify Missing Values in a
DEFINE Command page 12-6.

When the MISSING attribute is set to ON in a field declaration, the field containing no
data is marked with a special internal code, rather than with blanks or zeros. During
report generation, the SUM and COUNT commands and all prefix operators (for
example, AVE., MAX., MIN.) will exclude the missing data in their computations. For
related information about the MISSING attribute and field declarations, see the
Describing Data manual.

Note:

• You may add MISSING field attributes to the Master File at any time. However,
MISSING attributes affect only data entered into the data source after the attributes
were added.

• Key fields are needed to identify a record; therefore, key fields should not be
identified as missing.

 Missing Field Values

Creating Reports 12-5

Example Handling Missing Values With the MISSING Attribute
This example illustrates the difference between a field with MISSING ON and one
without. In it a virtual field, X_RETURNS, without the MISSING attribute, is set to
equal a real field, RETURNS, with the MISSING attribute declared in the Master File.
When the field with the MISSING attribute (RETURNS) is missing a value, the
corresponding value of X_RETURNS is 0, since a data source field that is missing a
value is evaluated as 0 (or blank) for the purpose of computation (see MISSING Attribute
in a DEFINE Command on page 12-5).
The following request defines the virtual field:
DEFINE FILE SALES
X_RETURNS/I4 = RETURNS;
END

Now issue the following report request:
TABLE FILE SALES
SUM CNT.X_RETURNS CNT.RETURNS AVE.X_RETURNS AVE.RETURNS
END

Remember that the field X_RETURNS has the same value as RETURNS except when
RETURNS is missing a value, in which case the X_RETURNS value is 0.
The output is:

The count for the RETURNS field is lower than the count for X_RETURNS and the
average for RETURNS is higher than for X_RETURNS because the missing values in
RETURNS are not part of the calculations.
For an illustration in which the MISSING attribute is set for a virtual field see Handling
Missing Values for Virtual Fields With SOME and ALL on page 12-8.

MISSING Attribute in a DEFINE Command
You can set the MISSING attribute ON in a DEFINE command to enable a virtual field
with missing values to be interpreted and represented correctly in reports.
A DEFINE expression, used to derive the values of the virtual field, can contain real
fields that have missing values. However, when used to derive the value of a virtual field,
a data source field that is missing a value is evaluated as 0 or blank for the purpose of
computation, even if the MISSING attribute has been set to ON for that field in the
Master File.
To ensure that missing values are handled properly for virtual fields, you can set the
MISSING attribute ON for the virtual field in the DEFINE command, and specify
whether you want to apply the calculation if some or all values are missing. See How to
Specify Missing Values in a DEFINE Command on page 12-6.
Note that you cannot use the MISSING attribute in a COMPUTE command in a report
request.

Handling Records With Missing Field Values

12-6 Information Builders

Syntax How to Specify Missing Values in a DEFINE Command
To control how missing values are handled for a virtual field, use the following syntax
field[/format] MISSING {ON|OFF} [NEEDS] {SOME|ALL} [DATA] = expression;

where:
field

Is the name of the virtual field created by the DEFINE command.
/format

Is the format of the virtual field. The default is D12.2.
MISSING

ON enables the value of the virtual field to be interpreted as missing (that is,
distinguished by the special internal code from an intentionally entered zero or
blank), and represented by the NODATA character in reports.

OFF treats missing values for numeric fields as zeros, and missing values for
alphanumeric fields as blanks. This is the default value.

NEEDS

Is optional. It helps to clarify the meaning of the command.
SOME

Indicates that if at least one field in the expression has a value, the virtual field has a
value (the field’s missing values are evaluated as 0 or blank in the calculation). If all
of the fields in the expression are missing values, the virtual field is missing its
value. This value is the default.

ALL

Indicates that if all the fields in the expression have values, the virtual field has a
value. If at least one field in the expression has a missing value, the virtual field also
has a missing value.

DATA

Is optional. It helps to clarify the meaning of the command.
expression

Is a valid expression from which the virtual field derives its value.

 Missing Field Values

Creating Reports 12-7

Example Handling Missing Values for a Virtual Field With MISSING OFF
The following request illustrates the use of two fields, RETURNS and DAMAGED, to
define the NO_SALE field. Both the RETURNS and DAMAGED fields have the
MISSING attribute set to ON in the SALES Master File, yet whenever one of these fields
is missing a value, that field is evaluated as 0.
DEFINE FILE SALES
NO_SALE/I4 = RETURNS + DAMAGED;
END

TABLE FILE SALES
PRINT RETURNS AND DAMAGED AND NO_SALE
BY CITY BY DATE BY PROD_CODE
END

The output is:

Notice that the products C13, C14, and E2 in the New York section all show missing
values for either RETURNS or DAMAGED because the MISSING ON attribute has been
set in the Master File. However, the calculation that determines the value of NO_SALE
interprets these missing values as zeros because MISSING ON has not been set for the
virtual field.

Handling Records With Missing Field Values

12-8 Information Builders

Example Handling Missing Values for Virtual Fields With SOME and ALL
The following request illustrates how to use the DEFINE command with the MISSING
attribute to specify that if either some or all of the field values referenced in a DEFINE
command are missing, the virtual field should also be missing its value.

The SOMEDATA field contains a value if either the RETURNS or DAMAGED field
contains a value. Otherwise, SOMEDATA is missing its value. The ALLDATA field
contains a value only if both the RETURNS and DAMAGED fields contain values.
Otherwise, ALLDATA is missing its value.
DEFINE FILE SALES
SOMEDATA/I5 MISSING ON NEEDS SOME=RETURNS + DAMAGED;
ALLDATA/I5 MISSING ON NEEDS ALL=RETURNS + DAMAGED;
END

TABLE FILE SALES
PRINT RETURNS AND DAMAGED SOMEDATA ALLDATA
BY CITY BY DATE BY PROD_CODE
END

The output is:

 Missing Field Values

Creating Reports 12-9

Testing for a Segment With a Missing Field Value
You can specify WHERE criteria to identify segment instances with missing field values.

You cannot use these tests to identify missing instances. However, you can use the ALL
PASS parameter to test for missing instances. See Handling a Missing Segment Instance
on page 12-13.

Syntax How to Test for a Segment With a Missing Field Value
To test for a segment with missing field values, the syntax is:
WHERE field {IS|EQ} MISSING

To test for the presence of field values, the syntax is:
WHERE field {NE|IS-NOT} MISSING

A WHERE criterion that tests a numeric field for 0 or an alphanumeric field for blanks
also retrieves instances for which the field has a missing value.

Example Testing for a Missing Field Value
The following request illustrates the use of MISSING to display grocery items (by code)
for which the number of packages returned by customers is missing.
TABLE FILE SALES
PRINT RETURNS
BY CITY BY DATE BY PROD_CODE
WHERE RETURNS IS MISSING
END

The output is:

Handling Records With Missing Field Values

12-10 Information Builders

Example Testing for an Existing Field Value
The following request illustrates the use of MISSING to display only those grocery items
for which the number of packages returned by customers is not missing.
TABLE FILE SALES
PRINT RETURNS
BY CITY BY DATE BY PROD_CODE
WHERE RETURNS IS-NOT MISSING
END

The output is:

 Missing Field Values

Creating Reports 12-11

Example Testing for a Blank or Zero
The following request displays grocery items that either were never returned or for which
the number of returned packages was never recorded:
TABLE FILE SALES
PRINT RETURNS
BY CITY BY DATE BY PROD_CODE
WHERE RETURNS EQ 0
END

The output is:

Example Excluding Missing Values From a Test
To display only those items that have not been returned by customers, you need two
WHERE criteria: one to restrict the number of returns to 0, the other to exclude missing
values, as in the following request:
TABLE FILE SALES
PRINT RETURNS
BY CITY BY DATE BY PROD_CODE
WHERE RETURNS EQ 0
WHERE RETURNS IS-NOT MISSING
END

The output is:

Handling Records With Missing Field Values

12-12 Information Builders

Preserving Missing Data Values in an Output File
The ability to distinguish between missing data and default values (blanks and zeros) in
fields can be carried over into output files. If the retrieved and processed information
displayed the NODATA string in a report, the NODATA string can be stored in the
output file. For related information, see Chapter 11, Saving and Reusing Report Output.

Syntax How to Distinguish Missing Data in an Extract File
ON TABLE {HOLD|SAVE|SAVB} MISSING {ON|OFF}

where:
HOLD

Creates an extract file that can be used for subsequent reports. The default value for
MISSING is ON.

SAVE

Creates a text extract file that can be used by other programs. The default for
MISSING is OFF.

SAVB

Creates a binary extract file that can be used by other programs. The default for
MISSING is OFF.

HOLD files can be created with both the MISSING and FORMAT ALPHA options,
specified in any order. For example:
ON TABLE HOLD FORMAT ALPHA MISSING OFF

ON TABLE HOLD MISSING OFF FORMAT ALPHA

Example Incorporating MISSING Values in an Extract File
The HOLD, SAVE, and SAVB commands can incorporate the MISSING attribute with
display commands. For example:
TABLE FILE SALES
SUM RETURNS AND SAVE MISSING ON
BY CITY BY DATE BY PROD_CODE
END

 Handling a Missing Segment Instance

Creating Reports 12-13

Handling a Missing Segment Instance
In multi-segment data sources, when an instance in a parent segment does not have
descendant instances, the nonexistent descendant instances are called missing instances.

When you write a request from a data source that has missing segment instances, the
missing instances affect the report. For example, if the request names fields in a segment
and its descendants, the report omits parent segment instances that have no descendants.
It makes no difference whether fields are display fields or sort fields.

When an instance is missing descendants in a child segment, the instance, its parent, the
parent of its parent, and so on up to the root segment, is called a short path. Unique
segments are never considered to be missing.

For example, consider the following subset of the EMPLOYEE data source (see
Appendix A, Master Files and Diagrams).

• The top segment contains employee names.

• The left segment contains addresses.

• The right segment contains each employee’s salary history: the date the employee
was granted a new salary and the amount of the salary.

FIRST_NAME
LAST_NAME

DAT_INC
SALARY

ADDRESS_LN1
ADDRESS_LN2
ADDRESS_LN3

Suppose some employees are paid by an outside agency. None of these employees have a
company salary history. Instances referring to these employees in the salary history
segment are missing.

Nonexistent descendant instances affect whether parent segment instances are included in
report results. The SET ALL command and the ALL. prefix enable you to include parent
segment data in reports.

For illustrations of how missing segment instances impact reporting, see Reporting
Against Segments Without Descendant Instances on page 12-14 and Reporting Against
Segments With Descendant Instances on page 12-15.

Handling Records With Missing Field Values

12-14 Information Builders

Example Reporting Against Segments Without Descendant Instances
The following request displays the salary histories for each employee:
TABLE FILE EMPLOYEE
PRINT SALARY
BY LAST_NAME BY FIRST_NAME
BY DAT_INC
END

However, two employees, Davis and Gardner, are omitted from the following report
because the LAST_NAME and FIRST_NAME fields belong to the root segment, and the
DAT_INC and SALARY fields belong to the descendant salary history segment. Since
Davis and Gardner have no descendant instances in the salary history segment, they are
omitted from the report.

The output is:

 Handling a Missing Segment Instance

Creating Reports 12-15

Example Reporting Against Segments With Descendant Instances
The following request displays the average salary and second address line of each
employee. The data source contains Davis’ address, but not Gardner’s.
TABLE FILE EMPLOYEE
SUM AVE.SALARY
AND ADDRESS_LN2
BY LAST_NAME BY FIRST_NAME
END

This report displays Davis’ name even though Davis has no salary history, because Davis
has an instance in the descendant address segment. The report omits Gardner entirely,
because Gardner has neither a salary history nor an address.

The output is:

Handling Records With Missing Field Values

12-16 Information Builders

Including Missing Instances in Reports With the ALL. Prefix
If a request excludes parent segment instances that lack descendants, you can include the
parent instances by attaching the ALL. prefix to one of the fields in the parent segment.

Note that if the request contains WHERE or IF criteria that screen fields in segments that
have missing instances, the report omits parent instances even when you use the ALL.
prefix. To include the instances, use the SET ALL=PASS command described in
Including Missing Instances in Reports With the SET ALL Command on page 12-17.

Example Including Missing Segment Instances With the ALL. Prefix
The following request displays the salary history of each employee. Although employees
Elizabeth Davis and David Gardner have no salary histories, they are included in the
report.
TABLE FILE EMPLOYEE
PRINT SALARY
BY ALL.LAST_NAME BY FIRST_NAME
BY DAT_INC
END

The output is:

 Handling a Missing Segment Instance

Creating Reports 12-17

Including Missing Instances in Reports With the SET ALL Command
You can include parent instances with missing descendants by issuing the SET ALL
command before executing the request.

Note: A request with WHERE or IF criteria, which screen fields in a segment that has
missing instances, omits instances in the parent segment even if you use the SET
ALL=ON command. To include these instances in the report, use the SET ALL=PASS
command.

Syntax How to Include a Parent Instance With Missing Descendants
SET ALL= {OFF|ON|PASS}

where:
OFF

Omits parent instances that are missing descendants from the report. OFF is the
default value.

ON

Includes parent instances that are missing descendants in the report. However, a test
on a missing segment fails, and causes the parent to be omitted from the output. It is
comparable to the ALL. prefix.

PASS

Includes parent instances that are missing descendants, even if WHERE or IF criteria
exist to screen fields in the descendant segments that are missing instances (that is, a
test on a missing segment passes).

Handling Records With Missing Field Values

12-18 Information Builders

Example Including Missing Segment Instances With SET ALL
Consider this request which includes employees without salary histories because the
ALL=PASS command is set.

If the ALL=ON command had been used, the employees without salary histories would
have been omitted because of the WHERE criteria.
SET ALL=PASS

TABLE FILE EMPLOYEE
PRINT SALARY
BY LAST_NAME BY FIRST_NAME
BY DAT_INC
WHERE SALARY LT 20000
END

The output is:

 Handling a Missing Segment Instance

Creating Reports 12-19

Testing for Missing Instances in FOCUS Data Sources
You can use the ALL PASS parameter to produce reports that include only parent
instances with missing descendant values. To do so, write the request to screen out all
existing instances in the segment with missing instances. After you set the ALL
parameter to PASS, the report will display only the parent instances missing descendants.

Example Testing for a MISSING Instance
The following request screens all salary instances since no SALARY can be both equal to
0 and not equal to 0.
SET ALL = PASS

TABLE FILE EMPLOYEE
PRINT LAST_NAME FIRST_NAME
WHERE SALARY EQ 0
WHERE SALARY NE 0
END

The output is:

Handling Records With Missing Field Values

12-20 Information Builders

Setting the NODATA Character String
In a report, the NODATA character string indicates no data or inapplicable data. The
default NODATA character is a period, however, you can change this character
designation.

Syntax How to Set the NODATA String
SET NODATA = string

where:
string

Is the character string used to indicate missing data in reports. The default string is a
period (.). The string may be a maximum of 11 characters. Common choices are
NONE, N/A, and MISSING.

Example Setting NODATA Not to Display Characters
If you do not want any characters, issue the command:
SET NODATA = ' '

Example Setting the NODATA Character String
In the following request, the NODATA character string is set to MISSING. The word
MISSING displays on the report instead of the default period.
SET NODATA=MISSING

TABLE FILE EMPLOYEE
PRINT CURR_SAL BY LAST_NAME BY FIRST_NAME
ACROSS DEPARTMENT
END

The output is:

Creating Reports 13-1

CHAPTER 13

Joining Data Sources

Topics:

• Types of Joins

• How the JOIN Command Works

• Creating an Equijoin

• Using a Conditional Join

• Preserving Virtual Fields During Join
Parsing

• Displaying Joined Structures

• Clearing Joined Structures

You can join two or more related data sources to create a larger
integrated data structure from which you can report in a single
request. The joined structure is virtual—it is a way of accessing
multiple data sources as if they were a single data source. Up to
16 joins can be in effect at one time, for a total of 64 segments,
depending on the number of active segments and the number and
length of the fields (there is a 32K limit on the length of all
fields).

With the exception of comma-delimited, tab-delimited, or
token-delimited files, you can join any supported data source type.
For details see Data Sources You Can and Cannot Join on page
13-3.

Joining Data Sources

13-2 Information Builders

Types of Joins
You can join data sources using one of two join types. The first type of join is known as
an equijoin. The second type of join is a conditional join. When deciding which of the
two types of joins to use, it is important to know that when there is an equality condition
between two data sources, it is more efficient to use an equijoin rather than a conditional
join.

You can use an equijoin structure when you are joining two (or more) data sources that
have two fields, one in each data source, with formats (character, numeric, or date) and
values in common. Joining a product code field in a sales data source (the host file) to the
product code field in a product data source (the cross-referenced file) is an example of an
equijoin. For more information on using equijoins, see Creating an Equijoin on page
13-13.

The second type of join, the conditional join, uses WHERE-based syntax to specify joins
based on WHERE criteria, not just on equality between fields. Additionally, the host and
cross-referenced join fields do not have to contain matching formats. Suppose you have a
data source that lists employees by their ID number (the host file) and another data source
that lists training courses and the employees who attended those courses (the
cross-referenced file). Using a conditional join, you could join employee ID in the host
file to employee ID in the cross-referenced file to determine which employees took
training courses in a given date range (the WHERE condition). For more information on
conditional joins, see Using a Conditional Join on page 13-23.

Both types of joins allow you to perform unique and non-unique joins. A unique, or
one-to-one, join structure matches one value in the host data source to one value in the
cross-referenced data source. Joining an employee ID in an employee data source to an
employee ID in a salary data source is an example of a unique equijoin structure.

A non-unique, or one-to-many, join structure matches one value in the host data source to
multiple values in the cross-referenced field. Joining employee ID in a company’s
employee data source to employee ID in a data source that lists all the training classes
offered by that company would result in a listing of all courses taken by each employee,
or a joining of the one instance of each ID in the host file to the multiple instances of that
ID in the cross-referenced file.

For more information on unique and non-unique joins, see Unique and Non-Unique
Joined Structures on page 13-4.

 Types of Joins

Creating Reports 13-3

Example Joined Data Structure
Consider the SALES and PRODUCT data sources. Each store record in SALES may
contain many instances of the PROD_CODE field. It would be redundant to store the
associated product information with each instance of the product code; instead,
PROD_CODE in the SALES data source is joined to PROD_CODE in the PRODUCT
data source. PRODUCT contains a single instance of each product code and related
product information, saving space and making maintenance of product information
easier. The joined structure, which is an example of an equijoin, is illustrated below:

SALES PRODUCT

Host Data Source Cross-referenced Data Source

PROD_CODE
PROD_NAME
PACKAGE
UNIT_COST

STORE_CODE
City
Area

Date

PROD_CODE
UNIT_CODE

Reference Data Sources You Can and Cannot Join
The use of data sources as host files and cross-referenced files in joined structures
depends on the types of data sources you are joining:

• Typically, joins can be established between any FOCUS-readable files.

• You cannot join comma-delimited, tab-delimited, or token-delimited files.

• Data sources protected by DBA security may be joined, with certain restrictions. For
details, see Notes on DBA Security for Joined Data Structures on page 13-4.

• Conditional joins are supported only for FOCUS, VSAM, ADABAS, IMS, and all
relational data sources.

Joining Data Sources

13-4 Information Builders

Reference Notes on DBA Security for Joined Data Structures
• You can join a data source with DBA protection to another data source with DBA

protection, as long as they use the same DBA password.

• In addition, you can join DBA protected data sources with different passwords by
adding the DBAFILE attribute to your security definition. The DBAFILE attribute
names a central Master File that contains different passwords and restrictions for
several Master Files. If you use a DBAFILE, a user can set separate passwords for
each file using the syntax:

SET PASS = pswd1 IN file1, pswd2 IN file2

Individual DBA information remains in effect for each file in the JOIN. For details
about the DBAFILE attribute, see the Describing Data manual.

• You can also join a DBA-protected host file to an unprotected cross-referenced file.
The DBA information is taken from the host file.

Unique and Non-Unique Joined Structures
In a unique joined structure, one value in the host field corresponds to one value in the
cross-referenced field. In a non-unique joined structure, one value in the host field
corresponds to multiple values in the cross-referenced field.

The ALL parameter in a JOIN command indicates that the joined structure is non-unique.

• Omit the ALL parameter only when you are sure that the joined structure is unique.
Omitting the ALL parameter reduces overhead.

• The ALL parameter will not interfere with the proper creation of the joined structure
even if it is unique. Use the ALL parameter if you are not sure whether the joined
structure is unique. This ensures that your reports will contain all relevant data from
the cross-referenced file, regardless of whether the structure is unique.

 Types of Joins

Creating Reports 13-5

Example A Unique Equijoin Structure
The following example illustrates a unique joined structure. Two FOCUS data sources
are joined together: an EMPDATA data source and a SALHIST data source. Both data
sources are organized by pin, and they are joined on a PIN field in the root segments of
both files. Each PIN has one segment instance in the EMPDATA data source and one
instance in the SALHIST data source. To join these two data sources, issue this JOIN
command:

JOIN PIN IN EMPDATA TO PIN IN SALHIST

PIN
LASTNAME
FIRSTNAME
MIDINITIAL

PIN
LASTNAME
FIRSTNAME
MIDINITIAL

PIN
EFFECTDATE
OLDSALARY

K

PIN
EFFECTDATE
OLDSALARY

EMPDATA Data
Source

SALHIST Data
Source

Joined
Structure

Joining Data Sources

13-6 Information Builders

Example A Non-Unique Equijoin Structure
If a field value in the host file can appear in many segment instances in the
cross-referenced file, then you should include the ALL phrase in the JOIN syntax. This
structure is called a non-unique joined structure.

For example, assume that two FOCUS data sources are joined together: the JOB data
source and an EDUCFILE data source which records employee attendance at in-house
courses. The joined structure is shown in the following diagram.

The JOB data source is organized by employee, but the EDUCFILE data source is
organized by course. The data sources are joined on the EMP_ID field. Since an
employee has one position but can attend several courses, the employee has one segment
instance in the JOB data source but can have many instances in the EDUCFILE data
source, as many instances as courses attended.

To join these two data sources, issue the following JOIN command, using the ALL
phrase:

JOIN EMP_ID IN JOB TO ALL EMP_ID IN EDUCFILE

EMP_ID
LAST_NAME
FIRST_NAME
JOB_TITLE

COURSE_CODE
COURSE_NAME

EMP_ID
LAST_NAME
FIRST_NAME
JOB_TITLE

JOB Data Source EDUCFILE Data Source Joined Structure

KEMP_ID
DATE_ATTENDED

COURSE_CODE
COURSE_NAME

EMP_ID
DATE_ATTENDED

KM

KLU

SH2

 Types of Joins

Creating Reports 13-7

Recursive Joined Structures
You can join a FOCUS or IMS data source to itself, creating a recursive structure. In the
most common type of recursive structure, a parent segment is joined to a descendant
segment, so that the parent becomes the child of the descendant. This technique (useful
for storing bills of materials, for example) enables you to report from data sources as if
they have more segment levels than they really do.

Example Understanding Recursive Joined Structures
For example, the GENERIC data source shown below consists of Segments A and B.

FIELD_A
NAME

S1

S1

FIELD_B
ADDRESS

GENERIC Data Source

The following request creates a recursive structure:

JOIN FIELD_B IN GENERIC TAG G1 TO FIELD_A IN GENERIC TAG G2 AS RECURSIV

Joining Data Sources

13-8 Information Builders

This results in the joined structure (shown below).

G2.FIELD_B
G2.ADDRESS

G2.FIELD_A
G2.NAME

S1

S1

KU

KL

FIELD_A
NAME

FIELD_B
ADDRESS

GENERIC Data Source
Recursively Joined

Note that the two segments are repeated on the bottom. To refer to the fields in the
repeated segments (other than the field to which you are joining), prefix the tag names to
the field names and aliases and separate them with a period or append the first four
characters of the JOIN name to the field names and aliases. In the above example, the
JOIN name is RECURSIV. You should refer to FIELD_B in the bottom segment as
G2.FIELD_B (or RECUFIELD_B). For related information, see Usage Notes for
Recursive Joined Structures on page 13-9.

 Types of Joins

Creating Reports 13-9

Reference Usage Notes for Recursive Joined Structures
• You must either specify a unique JOIN name or use tag names in the JOIN

command. Otherwise, you will not be able to refer to the fields in the repeated
segments at the bottom of the join structure.

• If you use tag names in a recursive joined structure, note the following guidelines:

• If tag names are specified in a recursive join, duplicate field names must be
qualified with the tag name.

• If a join name is specified and tag names are not specified in a recursive join,
duplicate field names must be prefixed with the first four characters of the join
name.

• If both a join name and a tag name are specified in a recursive join, the tag name
must be used as a qualifier.

• The tag name must be used as the field name qualifier in order to retrieve
duplicate field names in a non-recursive join. If you do not qualify the field
name, the first occurrence is retrieved.

• You may use a DEFINE-based join (see How to Join From a Virtual Field to a Real
Field on page 13-17) to join a virtual field in a descendant segment to a field in the
parent segment.

• You can extend a recursive structure by issuing multiple JOIN commands from the
bottom repeat segment in the structure to the parent segment, creating a structure up
to 16 levels deep.

• For FOCUS data sources, the field in the parent segment to which you are joining
must be indexed.

• For IMS data sources, the following applies:

• The parent segment must be the root segment of the data source.

• The field to which you are joining must be both a key field and a primary or
secondary index.

• You need a duplicate PCB in the PSB for every recursive join you create.

Joining Data Sources

13-10 Information Builders

Example Using Recursive Joined Structures
This example explains how to use recursive joins to store and report on a bill of
materials. Suppose you are designing a data source called AIRCRAFT that contains the
bill of materials for a company’s aircraft. The data source records data on three levels of
airplane parts:

• Major divisions, such as the cockpit or cabin.

• Parts of divisions, such as instrument panels and seats.

• Subparts, such as nuts and bolts.

The data source must record each part, the part description, and the smaller parts
composing the part. Some parts, such as nuts and bolts, are common throughout the
aircraft. If you design a three-segment structure, one segment for each level of parts,
descriptions of common parts will be repeated every place they are used.

To reduce this repetition, design a data source that has only two segments (shown in the
following diagram). The top segment describes each part of the aircraft, large and small.
The bottom segment lists the component parts without descriptions.

PART
DESCRIPTION

S1

S1

SUBPART

AIRCRAFT Data Source

Every part (except the largest divisions) appears in both the top segment, where it is
described, and in the bottom segment, where it is listed as one of the components of a
larger part. (The smallest parts, such as nuts and bolts, appear in the top segment without
an instance of a child in the bottom segment.) Note that each part, no matter how often it
is used in the aircraft, is described only once.

If you join the bottom segment to the top segment, the descriptions of component parts in
the bottom segment can be retrieved. The first-level major divisions can also be related to
third-level small parts, going from the first-level to the second-level to the third-level.
Thus, the structure behaves as a three-level data source, although it is actually a more
efficient two-level.

 Types of Joins

Creating Reports 13-11

For example, CABIN is a first-level division appearing in the top segment. It lists SEATS
as a component in the bottom segment. SEATS also appears in the top segment; it lists
BOLTS as a component in the bottom segment. If you join the bottom segment to the top
segment, you can go from CABIN to SEATS and from SEATS to BOLTS.

CABIN
114-SEAT CAPACITY

SEATS

Sample Instance in the AIRCRAFT Data Source

SEATS
20” WIDTH

BOLTS

JOIN

Join the bottom segment to the top segment with this JOIN command:

JOIN SUBPART IN AIRCRAFT TO PART IN AIRCRAFT AS SUB

This creates the following recursive structure.

AIRCRAFT Data Source
Recursively Joined

S1

S1

KU

KL

PART
DESCRIPTION

SUBPART

PART
SUBDESCRIPT

SUBSUBPART

You can then produce a report on all three levels of data with this TABLE command (the
field SUBDESCRIPT describes the contents of the field SUBPART):

TABLE FILE AIRCRAFT
PRINT SUBSUBPART BY PART BY SUBPART BY SUBDESCRIPT
END

Joining Data Sources

13-12 Information Builders

How the JOIN Command Works
The JOIN command enables you to report from two or more related data sources with a
single request. Joined data sources remain physically separate, but are treated as one. Up
to 16 joins can be in effect at any one time. The join applies to all requests run during the
session in which it is issued, unless it is explicitly cleared.

When two data sources are joined, one is called the host file; the other is called the
cross-referenced file. Each time a record from the host file is retrieved, the corresponding
fields in the cross-referenced file are identified if they are referenced in the report
request. The records in the cross-referenced file containing the corresponding values are
then retrieved.

Two data sources can be joined using a conditional join whenever you can define an
expression that determines how to relate records in the host file to records in the
cross-referenced file. Two data sources can be joined using an equijoin when they have
two fields one in each data source with formats (character, numeric, or date) and
values in common. The common formats ensure the proper interpretation of the values.
For example, suppose that you need to read data from two data sources: one named JOB,
containing job information, and a second named SALARY, containing salary
information. You can join these two data sources if each has a field identifying the same
group of employees in the same way: by last name, serial number, or social security
number. The join becomes effective when common values (let’s say common social
security numbers) are retrieved for the joined fields.
After you issue the JOIN command, you can issue a single TABLE, TABLEF, MATCH
FILE, or GRAPH request to read the joined data source. You only need to specify the
first data source (host file) to produce a report from two or more data sources. For
example, assume you are writing a report from the JOB and SALARY data sources. You
execute the following equijoin:
JOIN EMP_ID IN JOB TO ALL EMP_ID IN SALARY

This command joins the field EMP_ID in the JOB file to the field EMP_ID in the
SALARY file. JOB is the host file and SALARY is the cross-referenced file. You then
execute this report request:

TABLE FILE JOB
PRINT SALARY AND JOB_TITLE BY EMP_ID
END

The first record retrieved is a JOB file record for employee #071382660. Next, all records
in the SALARY data source containing employee #071382660 are retrieved. This process
continues until all the records have been read.
You can base your join on:

• Real fields that have been declared in the Master Files of the host and
cross-referenced data sources, respectively. See How to Join Real Fields on page
13-13.

• A virtual field in the host data source (that has either been defined in the Master File
or with a DEFINE command) and a real field that has been declared in the Master
File of the cross-referenced data source. See How to Join From a Virtual Field to a
Real Field on page 13-17.

 Creating an Equijoin

Creating Reports 13-13

Reference Increasing Retrieval Speed in Joined Data Sources
You can increase retrieval speed in joined structures by using an external index.
However, the target segment for the index cannot be a cross-referenced segment. For
related information, see Chapter 15, Improving Report Processing.

Creating an Equijoin
The most common joined structures are based on real fields that have been declared in
the Master Files of the host and cross-referenced data sources, respectively.

Syntax How to Join Real Fields

The following JOIN syntax requires that the fields you are using to join the files are real
fields declared in the Master File. This may be a simple join based on one field in each
file to be joined or a multi-field join for data sources that support this behavior. The
following syntax describes the simple and multi-field variations

JOIN field1 [AND field1a...] IN host [TAG tag1]
TO [ALL] field2 [AND field2a...] IN crfile [TAG tag2] [AS joinname]
END

where:

JOIN field1

Is the name of a field in the host file that contains values shared with a field in the
cross-referenced file. This field is called the host field.

AND field1a...

Can be an additional field in the host file with the caveats noted below. The phrase
beginning with AND is required when specifying multiple fields.

• When you are joining two FOCUS data sources you can specify up to four
alphanumeric fields in the host file that, if concatenated, contain values shared
with the cross-referenced file. You may not specify more than one field in the
cross-referenced file when the suffix of the cross-referenced file is FOC. For
example, assume the cross-referenced file contains a phone number field having
an area code-prefix-exchange format. The host file has an area code field, a
prefix field, and an exchange field. You can specify these three fields to join
them to the phone number field in the cross-referenced file. The JOIN command
treats the three fields as one. Other data sources do not have this restriction on
the cross-referenced file.

• For data adapters that support multi-field and concatenated joins, you can
specify up to 16 fields. See your data adapter documentation for specific
information about supported join features. Note that FOCUS data sources do not
support these joins.

IN host

Is the name of the host file.

Joining Data Sources

13-14 Information Builders

TAG tag1

Is a tag name of up to eight characters (usually the name of the Master File), which is
used as a unique qualifier for fields and aliases in host files.

The tag name for the host file must be the same in all the JOIN commands of a
joined structure.

TO [ALL] field2

Is the name of a field in the cross-referenced file that contains values that match
those of field1 (or of concatenated host fields). This field is called the
cross-referenced field. For related information see Requirements for
Cross-Referenced Fields in an Equijoin on page 13-15.

Use the ALL parameter when field2 may have multiple instances in common with
one value in field1. This is called a non-unique (one-to-many) join. See Unique and
Non-Unique Joined Structures on page 13-4.

AND field2a...
Field2a is the name of a field in the cross-referenced file with values in common
with field1a.

Note: Field2a may be qualified. This field is only available for data adapters that
support multi-field joins.

IN crfile

Is the name of the cross-referenced file.

TAG tag2

Is a tag name of up to eight characters (usually the name of the Master File), which is
used as a unique qualifier for fields and aliases in cross-referenced files. In a
recursive join structure, if no tag name is provided, all field names and aliases are
prefixed with the first four characters of the join name. For related information, see
Usage Notes for Recursive Joined Structures on page 13-9.

The tag name for the host file must be the same in all the JOIN commands of a
joined structure.

AS joinname

Is an optional name of up to eight characters that you may assign to the join
structure. You must assign a unique name to a join structure if:

• You want to ensure that a subsequent JOIN command will not overwrite it.

• You want to clear it selectively later.

• The structure is recursive, as explained in Recursive Joined Structures on page
13-7.

Note: If you do not assign a name to the join structure with the AS phrase, the name
is assumed to be blank. A join without a name will overwrite an existing join without
a name.

END

Required when the JOIN command is longer than one line; terminates the command.

 Creating an Equijoin

Creating Reports 13-15

Example Creating a Simple Unique Joined Structure
An example of a simple unique join is shown below:

JOIN JOBCODE IN EMPLOYEE TO JOBCODE IN JOBFILE AS JJOIN

Reference Requirements for Cross-Referenced Fields in an Equijoin
The cross-referenced fields used in a JOIN must have the following characteristics in
specific data sources:

• In relational data sources and in a CA-DATACOM/DB data source, the
cross-referenced field can be any field.

• In FOCUS and Fusion data sources, the cross-referenced field must be indexed.
Indexed fields have the attribute FIELDTYPE=I or INDEX=I or INDEX=ON in the
Master File. If the cross-referenced field does not have this attribute, append the
attribute to the field declaration in the Master File and rebuild the file using the
REBUILD utility with the INDEX option. This will add an index to your FOCUS or
Fusion data source.

Note: The indexed fields can be external. For more information, see the Maintaining
Databases manual on REBUILD.

• In IMS data sources, the cross-referenced field must be a key field in the root
segment. It can be a primary or secondary index.

• In fixed sequential files, the cross-referenced field can be any field. However, both
the host and cross-referenced file must be retrieved in ascending order on the named
(key) field. If the data is not in the same sort order, errors will be displayed. If the
cross-referenced file contains only one segment, the host file must have a segment
declaration.

Joining Data Sources

13-16 Information Builders

Reference Restrictions on Group Fields
When group fields are used in a joined structure, the group in the host file and the group
in the cross-referenced file must have the same number of elements.

• In ISAM data sources, the field must be the full primary key if you issue a unique
join or an initial subset of the primary key if you issue a non-unique join. In the
Master File, the primary key is described by a key GROUP; the initial subset is the
first field in that group.

• In VSAM KSDS data sources, the field must be the full primary or alternate key if
you issue a unique join or an initial subset of the primary or alternate key if you issue
a non-unique join. In the Master File, the primary key is described by a key GROUP;
the initial subset is the first field in that group.

In VSAM ESDS data sources, the field can be any field, as long as the file is already
sorted on that field.

• In Model 204 data sources, the field must be a key field. In the Access File, the types
of key fields are alphanumeric (KEY), ordered character (ORA), ordered numeric
(ORN), numeric range (RNG), invisible (IVK), and invisible range (IVR).

• In ADABAS data sources, the field must be a descriptor field, a superdescriptor
defined with the .SPR or .NOP field name suffix, or a subdescriptor defined with the
.NOP field name suffix. The field description in the Master File must contain the
attribute FIELDTYPE=I.

In the Access File, the cross-referenced segment must specify ACCESS=ADBS and
either CALLTYPE=FIND or CALLTYPE=RL. If CALLTYPE=RL, the host field
can be JOINed to the high-order portion of a descriptor, superdescriptor, or
subdescriptor, if the high-order portion is longer than the host field.

• In CA-IDMS/DB data sources, the field must be an indexed field on a network
record, identified by the attribute FIELDTYPE=I in the Master File; a CA-IDMS/DB
CALC field on a network record, identified by the CLCFLD phrase in the Access
File; or any field on an LRF or ASF record.

 Creating an Equijoin

Creating Reports 13-17

Joining From a Virtual Field to a Real Field Using an Equijoin
You can use DEFINE-based JOIN syntax to create a virtual host field that you can join to
a real cross-referenced field. The DEFINE expression that creates the virtual host field
may contain only fields in the host file and constants. (It may not contain fields in the
cross-referenced file.) You can do more than one join from a virtual field.

You can create the virtual host field in a separate DEFINE command or in a Master File.
For information on Master Files see the Describing Data manual.

The same report request can use JOIN-based virtual fields and virtual fields unrelated to
the join.

Note that if you are creating a virtual field in a DEFINE command, you must issue the
DEFINE after the JOIN command, but before the TABLE request since a JOIN command
clears all fields created by DEFINE commands for the host file and the joined structure.
Virtual fields defined in Master Files are not cleared.

Tip:

If a DEFINE command precedes the JOIN command, you can set KEEPDEFINES ON to
reinstate virtual fields during the parsing of a subsequent JOIN command. For more
information see Preserving Virtual Fields Using KEEPDEFINES on page 13-26.

Syntax How to Join From a Virtual Field to a Real Field
The DEFINE-based JOIN command enables you to join a virtual field in the host file to a
real field in the cross-referenced file. The syntax is

JOIN deffld WITH host_field IN hostfile [TAG tag1]
TO [ALL] cr_field IN crfile [TAG tag2] [AS joinname]
END

where:

JOIN deffld

Is the name of the virtual field for the host file (the host field). The virtual field can
be defined in the Master File or with a DEFINE command. For related information,
see Notes on Using Virtual Fields With Joined Data Sources on page 13-19.

WITH host_field

Is the name of any real field in the host segment with which you want to associate
the virtual field. This association is required to locate the virtual field.

To determine which segment contains the virtual field, use the ? DEFINE query. See
the Developing Applications manual for details about Query commands.

IN hostfile

Is the name of the host file.

Joining Data Sources

13-18 Information Builders

TAG tag1

Is a tag name of up to eight characters (usually the name of the Master File), which is
used as a unique qualifier for fields and aliases in host files.

The tag name for the host file must be the same in all the JOIN commands of a
joined structure.

TO cr_field

Is the name of a real field in the cross-referenced data source whose values match
those of the virtual field. This must be a real field declared in the Master File.

ALL

Is the parameter to use when the cross-referenced field may have multiple values in
common with one value in the virtual host field. See Unique and Non-Unique Joined
Structures on page 13-4 for more information.

IN crfile

Is the name of the cross-referenced file.

TAG tag2

Is a tag name of up to eight characters (usually the name of the Master File), which is
used as a unique qualifier for fields and aliases in cross-referenced files. In a
recursive joined structure, if no tag name is provided, all field names and aliases are
prefixed with the first four characters of the join name. For related information, see
Usage Notes for Recursive Joined Structures on page 13-9.

The tag name for the host file must be the same in all the JOIN commands of a
joined structure.

AS joinname

Is an optional name of up to eight characters that you may assign to the joined
structure. You must assign a unique name to a join structure if:

• You want to ensure that a subsequent JOIN command will not overwrite it.

• You want to clear it selectively later.

• The structure is recursive, and you do not specify tag names. See Recursive
Joined Structures on page 13-7.

If you do not assign a name to the joined structure with the AS phrase, the name is
assumed to be blank. A join without a name will overwrite an existing join without a
name.

END

Required when the JOIN command is longer than one line; terminates the command.

 Creating an Equijoin

Creating Reports 13-19

Reference Notes on Using Virtual Fields With Joined Data Sources
Requests reading joined data sources can contain virtual fields that are defined either:

• In the Master File of the host data source.

• In a DEFINE command, in which the syntax

DEFINE FILE hostfile

identifies the host data source in the joined structure.

Note: The expression defining the host field for the join can use only host fields and
constants.

All other virtual fields can contain real fields from the host file and the
cross-referenced file.

Tip:

Since issuing the JOIN command clears all DEFINE commands for the host file and
the joined structure, you must issue the DEFINE command after the JOIN or you can
turn KEEPDEFINES ON to preserve the virtual fields. For more information see
Preserving Virtual Fields During Join Parsing on page 13-26.

Joining Data Sources

13-20 Information Builders

Example Creating a Virtual Host Field for a Joined Structure
Suppose that a retail chain sends four store managers to attend classes. Each person,
identified by an ID number, manages a store in a different city. The stores and the cities
where they are located are contained in the SALES data source. The manager IDs, the
classes, and dates the managers attended are contained in the EDUCFILE data source.

The following procedure lists the courses that the managers attended, identifying the
managers by the cities where they work. Note the three elements in the procedure:

• The JOIN command joins the SALES data source to the EDUCFILE data source,
based on the values common to the ID_NUM field (which contains manager IDs) in
SALES and the EMP_ID field in EDUCFILE. Note that the ID_NUM field does not
exist yet; it will be created by the DEFINE command.

• The DEFINE command creates the ID_NUM field, assigning to it the IDs of the
managers working in the four cities.

• The TABLE command produces the report.

The procedure is:

JOIN ID_NUM WITH CITY IN SALES TO ALL EMP_ID IN EDUCFILE AS SALEDUC

DEFINE FILE SALES
ID_NUM/A9 = DECODE CITY ('NEW YORK' 451123478 'NEWARK' 119265415
 'STAMFORD' 818692173 'UNIONDALE' 112847612);
END

TABLE FILE SALES
PRINT DATE_ATTEND BY CITY BY COURSE_NAME
END

The output is:
CITY COURSE_NAME DATE_ATTEND
---- ----------- -----------
NEW YORK FILE DESCRPT & MAINT 81/11/15
NEWARK BASIC RPT NON-DP MGRS 82/08/24
STAMFORD BASIC REPORT PREP DP MGRS 82/08/02
 HOST LANGUAGE INTERFACE 82/10/21
UNIONDALE BASIC REPORT PREP FOR PROG 81/11/16
 FILE DESCRPT & MAINT 81/11/15

 Creating an Equijoin

Creating Reports 13-21

Data Formats of Shared Fields
Generally, the fields containing the shared values in the host and cross-referenced files
must have the same data formats.

If you specify multiple host file fields, the JOIN command treats the fields as one
concatenated field. Add the field format lengths to obtain the length of the concatenated
field. You must observe the following rules:

• If the host field is an alphanumeric field, the cross-referenced field must also be
alphanumeric and have the same length.

The formats may have different edit options.

Note that a text field cannot be used to join data sources.

• If the host field is a numeric field, the host field format, as specified by the USAGE
(or FORMAT) attribute in the Master File, must agree in type (I, P, F, or D) with the
format of the cross-referenced field as specified by the USAGE (or FORMAT)
attribute, unless you issue the SET JOINOPT command, which enables you to join
numeric fields with different data types. For details, see Joining Fields With
Different Numeric Data Types on page 13-22.

The edit options may differ. The length may also differ, but with the following
effect:

• If the format of the host field (as specified by the USAGE attribute) is packed
decimal (P) or integer (I) and is longer than the cross-referenced field format
(specified by the USAGE attribute for FOCUS data sources or the ACTUAL
attribute for other data sources, only the length of the cross-referenced field
format is compared, using only the right-most digits of the shorter field. For
example, if a five-digit packed decimal format field is joined to a three-digit
packed decimal format field, when a host record with a five-digit number is
retrieved, all cross-referenced records with the last three digits of that number
are also retrieved.

• If the format of the host field is double precision (D), the left-most eight bytes of
each field are compared.

• If the host field is a date field, the cross-referenced field must also be a date field.
Date and date-time fields must have the same components, not necessarily in the
same order.

• The host and cross-referenced fields can be described as groups in the Master File if
they contain the same number of component fields. The corresponding component
fields in each group (for example, the first field in the host group and the first field in
the cross-referenced group) must obey the above rules. For related information, see
Restrictions on Group Fields on page 13-16.

If the host field is not a group field, the cross-referenced field can be a group. If the
host field is a group, the cross-referenced field must also be a group.

Joining Data Sources

13-22 Information Builders

Joining Fields With Different Numeric Data Types
You can join two or more data sources containing different numeric data types. For
example, you can join a field with a short packed decimal format to a field with a long
packed decimal format, or a field with an integer format to a field with a packed decimal
format. This provides enormous flexibility for creating reports from joined data sources.

• When joining a shorter field to a longer field, the cross-referenced value is padded to
the length of the host field, adding spaces (for alpha fields) or hexadecimal zeros (for
numeric fields). This new value is used for searches in the cross-referenced file.

• When joining a longer field to a shorter field, the FROM value is truncated. If part of
your value is truncated due to the length of the USAGE in the cross-referenced file,
only records matching the truncated value will be found in the cross-referenced file.

Note: For comparison on packed decimal fields to be accomplished properly, all signs for
positive values are converted to hex C and all signs for negative values are converted to
hex D.

Syntax How to Enable Joins With Data Type Conversion
To enable joins with data type conversion, issue the command

SET JOINOPT = [NEW|OLD]

where:

NEW

Enables joins with data type conversion.

OLD

Disables joins with data type conversion. This value is the default.

Example Issuing Joins With Data Type Conversion
Since you can join a field with a short packed decimal format to a field with a long
packed decimal format, a join can be defined in the following Master Files:

FILE=PACKED,SUFFIX=FIX,$
 SEGNAME=ONE,SEGTYPE=S0
 FIELD=FIRST,,P8,P4,INDEX=I,$

FILE=PACKED2,SUFFIX=FIX,$
 SEGNAME=ONE,SEGTYPE=S0
 FIELD=PFIRST,,P31,P16,INDEX=I,$

The JOIN command might look like this:

JOIN FIRST IN PACKED TO ALL PFIRST IN PACKED2 AS J1

When joining packed fields, the preferred sign format of X’C for positive values and
X’D’ for negative values is still required. All other non-preferred signs are converted to
either X’C’ or X’D’.

 Using a Conditional Join

Creating Reports 13-23

Using a Conditional Join
Using conditional JOIN syntax, you can establish joins based on conditions other than
equality between fields. In addition, the host and cross-referenced join fields do not have
to contain matching formats, and the cross-referenced field does not have to be indexed.

The conditional join is supported for FOCUS and for VSAM, ADABAS, IMS, and all
relational data sources. Because each data source differs in its ability to handle complex
WHERE criteria, the optimization of the conditional JOIN syntax differs depending on
the specific data sources involved in the join and the complexity of the WHERE criteria.

The standard ? JOIN command lists every join currently in effect, and indicates any that
are based on WHERE criteria. For details and sample output, see the Developing
Applications manual.

Syntax How to Create a Conditional JOIN
The syntax of the conditional (WHERE-based) JOIN command is
JOIN FILE from_file AT from_field [TAG from_tag] [WITH fieldname]
 TO [ALL|ONE]
 FILE to_file AT to_field [TAG to_tag]
 [AS as_name]
 [WHERE expression1 ;
 WHERE expression2 ;
 ... ;]
END

where:

from_file

Is the host Master File.

AT

Links the correct parent segment or host to the correct child or cross-referenced
segment. The field values used as the AT parameter are not used to cause the link.
They are simply used as segment references.

from_field

Is the field name in the host Master File whose segment will be joined to the
cross-referenced data source. The field name must be at the lowest level segment in
its data source that will be referenced.

from_tag

Is the optional tag name that is used as a unique qualifier for fields and aliases in the
host data source.

fieldname

Is a data source field with which to associate a DEFINE-based conditional join. For a
DEFINE-based conditional join, the KEEPDEFINES setting must be on and you
must create the virtual fields before issuing the JOIN command.

ALL

Is the one-to-many relationship between the from_file and to_file.

Joining Data Sources

13-24 Information Builders

ONE

Is the one-to-one relationship between the from_file and to_file.

to_file

Is the cross-referenced Master File.

to_field

Is the join field name in the cross-referenced Master File. It can be any field in the
segment.

to_tag

Is the optional tag name that is used as a unique qualifier for fields and aliases in the
cross-referenced data source.

as_name

Is the name associated with the joined structure.

expression1, expression2

Are any expression that is acceptable in a DEFINE FILE command. All fields used
in the expression must lie on a single path.

Note: Single line JOIN syntax is not supported. The END command is required.

Example Using a Conditional Join
The following example joins the VIDEOTRK and MOVIES data sources on the
conditions that:

• The transaction date (in VIDEOTRK) is more than ten years after the release date (in
MOVIES).

• The movie codes match in both data sources.

The join is performed at the segment that contains MOVIECODE in the VIDEOTRK
data source because the join must occur at the lowest segment referenced.

The following request displays the title, most recent transaction date, and release date for
each movie in the join and computes the number of years between this transaction date
and the release date:

JOIN FILE VIDEOTRK AT MOVIECODE TAG V1 TO ALL
 FILE MOVIES AT RELDATE TAG M1 AS JW1
 WHERE DATEDIF(RELDATE , TRANSDATE,'Y') GT 10 ;
 WHERE V1.MOVIECODE EQ M1.MOVIECODE;
END
TABLE FILE VIDEOTRK
 SUM TITLE/A25 AS 'Title'
 TRANSDATE AS 'Last,Transaction'
 RELDATE AS 'Release,Date'
 COMPUTE YEARS/I5 = (TRANSDATE - RELDATE)/365; AS 'Years,Difference'
 BY TITLE NOPRINT
 BY HIGHEST 1 TRANSDATE NOPRINT
END

 Using a Conditional Join

Creating Reports 13-25

The output is:

 Last Release Years
Title Transaction Date Difference
----- ----------- ------- ----------
ALICE IN WONDERLAND 91/06/22 51/07/21 39
ALIEN 91/06/18 80/04/04 11
ALL THAT JAZZ 91/06/25 80/05/11 11
ANNIE HALL 91/06/24 78/04/16 13
BAMBI 91/06/22 42/07/03 49
BIRDS, THE 91/06/23 63/09/27 27
CABARET 91/06/25 73/07/14 17
CASABLANCA 91/06/27 42/03/28 49
CITIZEN KANE 91/06/22 41/08/11 49
CYRANO DE BERGERAC 91/06/20 50/11/09 40
DEATH IN VENICE 91/06/26 73/07/27 17
DOG DAY AFTERNOON 91/06/23 76/04/04 15
EAST OF EDEN 91/06/20 55/01/12 36
GONE WITH THE WIND 91/06/24 39/06/04 52
JAWS 91/06/27 78/05/13 13
MALTESE FALCON, THE 91/06/19 41/11/14 49
MARTY 91/06/19 55/10/26 35
NORTH BY NORTHWEST 91/06/21 59/02/09 32
ON THE WATERFRONT 91/06/24 54/07/06 36
PHILADELPHIA STORY, THE 91/06/21 40/05/06 51
PSYCHO 91/06/17 60/05/16 31
REAR WINDOW 91/06/17 54/12/15 36
SHAGGY DOG, THE 91/06/25 59/01/09 32
SLEEPING BEAUTY 91/06/24 75/08/30 15
TIN DRUM, THE 91/06/17 80/03/01 11
VERTIGO 91/06/27 58/11/25 32

Joining Data Sources

13-26 Information Builders

Preserving Virtual Fields During Join Parsing
There are two ways to preserve virtual fields during join parsing. One way is to use
KEEPDEFINES, and the second is to use DEFINE FILE SAVE and DEFINE FILE
RETURN.

Preserving Virtual Fields Using KEEPDEFINES
The KEEPDEFINES parameter determines if a virtual field created by the DEFINE
command for a host or joined structure is retained or cleared after the JOIN command is
run. It applies when the DEFINE command precedes the JOIN command.

The prior virtual fields constitute what is called a context. Each new context creates a
new layer or command environment. When you first enter the new environment, all
virtual fields defined in the previous layer are available in the new layer. Overwriting or
clearing a virtual field definition affects only the current layer. When you return to the
previous layer, its virtual field definitions are intact.

New DEFINE fields issued after the JOIN command constitute another context, and by so
doing generate a stack of contexts. In each context, all virtual fields of all prior contexts
are accessible.

• By default the KEEPDEFINES setting is OFF. With this setting, a JOIN command
removes prior virtual fields.

• When KEEPDEFINES is set to ON, virtual fields are reinstated during the parsing of
a subsequent JOIN command.

A JOIN CLEAR as_name command will remove all the contexts that were created after
the JOIN as_name was issued.

For DEFINE-based conditional joins, the KEEPDEFINES setting must be ON. You then
must create all virtual fields before issuing the DEFINE-based conditional JOIN
command. This differs from traditional DEFINE-based joins in which the virtual field is
created after the JOIN command. In addition, a virtual field may be part of the JOIN
syntax or WHERE syntax.

DEFINE commands issued after the JOIN command do not replace or clear the virtual
fields created before the join since a new file context is created.

Syntax How to Use KEEPDEFINES
SET KEEPDEFINES = {ON|OFF}

where:

ON

Retains the virtual field after a JOIN command is run.

OFF

Clears the virtual field after a JOIN command is run. This value is the default.

 Preserving Virtual Fields During Join Parsing

Creating Reports 13-27

Example Preserving Virtual Fields During Join Parsing With KEEPDEFINES
The first virtual field, DAYSKEPT, is defined prior to issuing any joins, but after setting
KEEPDEFINES to ON. DAYSKEPT is the number of days between the return date and
rental date for videotape:

SET KEEPDEFINES = ON
DEFINE FILE VIDEOTRK
DAYSKEPT/I5 = RETURNDATE - TRANSDATE;
END

The ? DEFINE query command shows that this is the only virtual field defined at this
point:

? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW TYPE
VIDEOTRK DAYSKEPT I5 4

The following request prints all transactions in which the number of days kept is two:

TABLE FILE VIDEOTRK
PRINT MOVIECODE TRANSDATE RETURNDATE DAYSKEPT
WHERE DAYSKEPT EQ 2
END

The first few lines of output show that each return date is two days after the transaction
date:

MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
001MCA 91/06/27 91/06/29 2 2
692PAR 91/06/27 91/06/29 2 2
259MGM 91/06/19 91/06/21 2 2

Now, the VIDEOTRK data source is joined to the MOVIES data source. The ? DEFINE
query shows that the join did not clear the DAYSKEPT virtual field:

JOIN MOVIECODE IN VIDEOTRK TO ALL MOVIECODE IN MOVIES AS J1
? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK DAYSKEPT I5 4

Next a new virtual field, YEARS is defined for the join between VIDEOTRK and
MOVIES:

DEFINE FILE VIDEOTRK
YEARS/I5 = (TRANSDATE - RELDATE)/365;
END

Joining Data Sources

13-28 Information Builders

The ? DEFINE query shows that the virtual field created prior to the join was not cleared
by this new virtual field because it was in a separate context:

? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK DAYSKEPT I5 4
VIDEOTRK YEARS I5 5

Next, the field DAYSKEPT is re-defined so that it is the actual number of days plus one:

DEFINE FILE VIDEOTRK
DAYSKEPT/I5 = RETURNDATE - TRANSDATE + 1;
END

The ? DEFINE query shows that there are two versions of the DAYSKEPT virtual field.
However, YEARS was cleared because it was in the same context (after the join) as the
new version of DAYSKEPT and the DEFINE command did not specify the ADD option:

? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK DAYSKEPT I5 4
VIDEOTRK DAYSKEPT I5 4

The same request now uses the new definition for DAYSKEPT. Note that the number of
days between the return date and transaction date is actually one day, not two because of
the change in the definition of DAYSKEPT:

MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
040ORI 91/06/20 91/06/21 2 1
505MGM 91/06/21 91/06/22 2 1
710VES 91/06/26 91/06/27 2 1

Now, J1 is cleared. The redefinition for DAYSKEPT is also cleared:

 JOIN CLEAR J1
? DEFINE

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK DAYSKEPT I5 4

The report output shows that the original definition for DAYSKEPT is now in effect:

MOVIECODE TRANSDATE RETURNDATE DAYSKEPT ACTUAL_DAYS
--------- --------- ---------- -------- -----------
001MCA 91/06/27 91/06/29 2 2
692PAR 91/06/27 91/06/29 2 2
259MGM 91/06/19 91/06/21 2 2

 Preserving Virtual Fields During Join Parsing

Creating Reports 13-29

Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN
The DEFINE FILE SAVE command forms a new context for virtual fields, which can
then be removed with DEFINE FILE RETURN.

For details, see Chapter 6, Creating Temporary Fields.

Example Using DEFINE FILE SAVE and RETURN
The following command enables you to preserve virtual fields within a file context:

SET KEEPDEFINES=ON

The following command defines virtual field A for the VIDEOTRK data source and
places it in the current context:

DEFINE FILE VIDEOTRK
 A/A5='JAWS';
 END

The following command creates a new context and saves virtual field B in this context:

DEFINE FILE VIDEOTRK SAVE
 B/A5='ROCKY';
 END
? DEFINE

The output of the ? DEFINE query lists virtual fields A and B:

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK A A5
VIDEOTRK B A5

The following DEFINE command creates virtual field C. All previously defined virtual
fields are cleared because the ADD option was not used in the DEFINE command:

DEFINE FILE VIDEOTRK
 C/A10='AIRPLANE';
 END
? DEFINE

The output of the ? DEFINE query shows that C is the only virtual field defined:

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK C A10

Joining Data Sources

13-30 Information Builders

The following JOIN command creates a new context. Because KEEPDEFINES is set to
ON, virtual field C is not cleared by the JOIN command:

JOIN MOVIECODE IN VIDEOTRK TAG V1 TO MOVIECODE IN MOVIES TAG M1 AS J1
? DEFINE

The output of the ? DEFINE query shows that field C is still defined:

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK C A10

The next DEFINE command creates virtual field D in the new context created by the
JOIN command:

DEFINE FILE VIDEOTRK SAVE
 D/A10='TOY STORY';
 END
? DEFINE

The output of the ? DEFINE query shows that virtual fields C and D are defined:

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK C A10
VIDEOTRK D A10

The DEFINE FILE RETURN command clears virtual field D created in the current
context (after the JOIN):

DEFINE FILE VIDEOTRK RETURN
? DEFINE

The output of the ? DEFINE query shows that virtual field D was cleared, but C is still
defined:

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK C A10

The following DEFINE FILE RETURN command does not clear virtual field C because
field C was not created using a DEFINE FILE SAVE command:

DEFINE FILE VIDEOTRK RETURN
 END
? DEFINE

The output of the ? DEFINE query shows that virtual field C is still defined:

FILE FIELD NAME FORMAT SEGMENT VIEW
TYPE
VIDEOTRK C A10

Note: DEFINE FILE RETURN is only activated when a DEFINE FILE SAVE is in
effect.

 Displaying Joined Structures

Creating Reports 13-31

Screening Segments With Conditional JOIN Expressions
The conditional JOIN command can reference any and all fields in the joined segment
and any and all fields in the parent segment, or higher on the parent’s path.

When active, these Join expressions screen the segment they reside on (the child or
joined segment). That is, if no child segment passes the test defined by the expression, the
join follows the rules of SET ALL=OFF, or SET ALL=ON when no child segment
exists. Unlike WHERE phrases in TABLE commands, JOIN_WHERE screening does
not automatically screen the parent segment when SET ALL=ON.

Parsing WHERE Criteria in a Join
WHERE criteria take effect in a join only when a TABLE request reference is made to a
cross-referenced segment or its children. If no such reference is made, the WHERE has
no effect.

The AT attribute is used to link the correct parent segment or host to the correct child or
cross-referenced segment. The field values used as the AT parameter are not used to
cause the link. They are simply used as segment references.

Note: If no WHERE criteria are in effect, you will receive a Cartesian product.

Displaying Joined Structures
When you join two data sources together, they are subsequently treated as one logical
structure. This structure results from appending the structure of the cross-referenced file
to the structure of the host file. The segment in the cross-referenced file containing the
shared value field becomes the child of the segment in the host file with the shared value
field.

Syntax How to Display a Joined Structure
To display the joined structure, issue the following command

CHECK FILE hostfile PICTURE

where:

hostfile

Is the name of the host file. For an illustration, see Displaying Joined Structures on
page 13-31.

Joining Data Sources

13-32 Information Builders

Example Displaying a Joined Structure
Notice that the segments belonging to the host file appear as regular segments outlined by
asterisks; the segments belonging to the cross-referenced file appear as virtual segments
outlined by dots. The segments of the cross-referenced file are also labeled with the
cross-referenced file name below each segment.

JOIN PIN IN EMPDATA TO PIN IN SALHIST

CHECK FILE EMPDATA PICTURE

0 NUMBER OF ERRORS= 0

 NUMBER OF SEGMENTS= 2 (REAL= 1 VIRTUAL= 1)

 NUMBER OF FIELDS= 14 INDEXES= 1 FILES= 2

 NUMBER OF DEFINES= 1

 TOTAL LENGTH OF ALL FIELDS= 132

1SECTION 01.01

 STRUCTURE OF FOCUS FILE EMPDATA ON 03/05/01 AT 12.22.49

 EMPDATA
 01 S1

 *PIN **I
 *LASTNAME **
 *FIRSTNAME **
 *MIDINITIAL **
 * **

 I

 I

 I

 I SLHISTRY

 02 I KU

 :PIN :K

 :EFFECTDATE :

 :OLDSALARY :

 : :

 : :

 :............:

 JOINED SALHIST

The top segment of the cross-referenced file structure is the one containing the
shared-value field. If this segment is not the root segment, the cross-referenced file
structure is inverted, as it would be in an alternate file view.

 Displaying Joined Structures

Creating Reports 13-33

The cross-referenced file segment types in the joined structure are the following:

• In unique join structures, the top cross-referenced file segment has the segment type
KU. Its unique child segments have segment type KLU; non-unique child segments
have segment type KL.

• In non-unique join structures, the top cross-referenced file segment has the segment
type KM. Its unique child segments have segment type KLU; non-unique child
segments have segment type KL.

The host file structure remains unchanged. The cross-referenced file may still be used
independently.

Syntax How to List Joined Structures
To display a list of joined data sources, issue the following command:

? JOIN

This displays every JOIN command currently in effect. For example:

 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --
JOBCODE EMPLOYEE JOBCODE JOBFILE N N

If the joined structure has no join name, the AS phrase is omitted. If two data sources are
joined by multiple JOIN commands, only the first command you issued is displayed. The
N in the WH column indicates that the join is not conditional. A Y indicates that the join
is conditional.

Joining Data Sources

13-34 Information Builders

Clearing Joined Structures
You can clear specific join structures or all existing structures. Clearing deactivates the
designated joins. If you clear a conditional join, all joins issued subsequently to that join
that use the same host file also are cleared.

Tip:

If you wish to list the current joins before clearing or see details about all active joined
structures, issue the query command ? JOIN. For details and illustrations, see How to List
Joined Structures on page 13-33.

Syntax How to Clear a Join
To clear a joined structure, issue this command

JOIN CLEAR {joinname|*}

where:

joinname

Is the AS name of the joined structure you want to clear.

*

Clears all joined structures.

Clearing a Conditional Join
You can clear a join by issuing the JOIN CLEAR command. The effect of the JOIN
CLEAR command depends on whether any conditional join exists.

• If conditional joins are found, and were issued after the join you wish to clear, or if
the join you wish to clear is a conditional join, then the JOIN CLEAR as_name
command removes all joins issued after the specified join.

• If no conditional joins were issued after the join you wish to clear, only the join you
specify will be cleared. Any virtual fields saved in the context of a join that is cleared
will also be cleared. Normal joins may or may not be cleared, depending on the
position of the conditional join. The JOIN CLEAR * command will clear every join
issued, along with its associated virtual fields. However, all virtual fields in the null
context will remain untouched.

Note: The null context is the context of the data source prior to any joins being issued.

 Clearing Joined Structures

Creating Reports 13-35

Example Clearing Joins
The following request creates three joins using VIDEOTRK as the host data source. The
first two are conditional (JW1, JW2), and the third join is unconditional (J1):

JOIN FILE VIDEOTRK AT PRODCODE TO ALL
 FILE GGSALES AT PCD AS JW1
WHERE PRODCODE NE PCD;
END
JOIN FILE VIDEOTRK AT TRANSDATE TO ALL
 FILE MOVIES AT RELDATE AS JW1
WHERE (TRANSDATE - RELDATE)/365 GT 10;
END
JOIN MOVIECODE IN VIDEOTRK TO MOVIECODE IN MOVIES AS J1

The next request creates a conditional join (JW3) using MOVIES as the host data source:

JOIN FILE MOVIES AT MOVIECODE TO ONE
 FILE VIDEOTRK AT TRANSDATE AS JW2
WHERE (TRANSDATE - RELDATE)/365 LT 2;
END

The last request creates a third conditional join (JW4) that uses VIDEOTRK as the host
data source:

JOIN FILE VIDEOTRK AT LASTNAME TO ALL
 FILE EMPLOYEE AT LAST_NAME AS JW3
WHERE LASTNAME GE LAST_NAME;
END

Following is the output of the ? JOIN query after executing these joins:

? JOIN
 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH

----- ---- --- ----- ---- --- -- --- --
PRODCODE VIDEOTRK PCD GGSALES JW1 Y Y
TRANSDATE VIDEOTRK RELDATE MOVIES JW2 Y Y

MOVIECODE VIDEOTRK MOVIECODE MOVIES J1 N N
MOVIECODE MOVIES TRANSDATE VIDEOTRK JW3 N Y
LASTNAME VIDEOTRK LAST_NAME EMPLOYEE JW4 Y Y

Clearing JW2 clears all joins that were issued after JW2 and that use the same host data
source. JW1 remains because it was issued prior to JW2, and JW3 remains because it
uses a different host data source:
JOIN CLEAR JW2

? JOIN
 JOINS CURRENTLY ACTIVE

HOST CROSSREFERENCE
FIELD FILE TAG FIELD FILE TAG AS ALL WH
----- ---- --- ----- ---- --- -- --- --

PRODCODE VIDEOTRK PCD GGSALES JW1 Y Y
MOVIECODE MOVIES TRANSDATE VIDEOTRK JW3 N Y

Creating Reports 14-1

CHAPTER 14

Merging Data Sources

Topics:

• Merging Data

• MATCH Processing

• MATCH Processing With Common
High Order Sort Fields

• Fine Tuning MATCH Processing

• Universal Concatenation

• Merging Concatenated Data
Sources

• Cartesian Product

You can gather data for your reports by merging the contents of
data structures with the MATCH command, or concatenating
data sources with the MORE phrase, and reporting from the
combined data.

Merging Data Sources

14-2 Information Builders

Merging Data
You can merge two or more data sources, and specify which records will be merged and
which will be screened out, using the MATCH command. The command creates a new
data source—a HOLD file—into which it merges fields from the selected records. You
can report from the new data source and use it as you would any other HOLD file. The
merge process does not change the original data sources. For more information on HOLD
files, see Chapter 11, Saving and Reusing Report Output.

You select the records to be merged into the new data source by specifying sort fields in
the MATCH command. You specify one set of sort fields—using the BY phrase—for the
first data source, and a second set of sort fields for the second data source. The MATCH
command compares all sort fields that have been specified in common for both data
sources, and then merges all records from the first data source whose sort values match
those in the second data source into the new HOLD file. You can specify up to 32 sort
sets; this includes the number of common sort fields.

In addition to merging data source records that share values, you can merge records
based on other relationships. For example, you can merge all records whose values do
not match—that is, all records in each data source whose sort values are not matched in
the other data source. Yet another type of merge combines all records from the first data
source with any matching records from the second data source.

You can merge up to six sets of data in one MATCH request—for example, you can
merge six different data sources or data from the same data source up to six times.

 Merging Data

Creating Reports 14-3

Syntax How to Merge Data Sources
The syntax of the MATCH command is similar to that of the TABLE command
MATCH FILE file1
.
.
.
RUN
FILE file2
.
.
.
[AFTER MATCH merge_phrase]
RUN
FILE file3
.
.
.
[AFTER MATCH merge_phrase]
END

where:

file1

Is the first data source from which MATCH retrieves requested records.
merge_phrase

Specifies how the retrieved records from the files are to be compared. For details,
see Merge Phrases on page 14-6.

file2/file3

Are additional data sources from which MATCH retrieves requested records.

Note that a RUN command must follow each AFTER MATCH command (except for the
last one). The END command must follow the final AFTER MATCH command.

MATCH generates a single-segment HOLD file. You can print the contents of the HOLD
file using the PRINT command with the wildcard character (*). For related information,
see Merging Data Sources on page 14-4.

Reference Usage Notes for Merging Data Sources
• The ACROSS and WHERE TOTAL phrases, and the COMPUTE command, are not

permitted in a MATCH request. You can, however, use the DEFINE command.

• A total of 32 BY phrases and the maximum number of display fields can be used in
each MATCH request. The maximum number of display fields is determined by a
combination of factors. For details, see Chapter 1, Creating Tabular Reports.

• Up to 32 sort sets are supported, including the number of common sort fields.

• You must specify at least one BY field for each file used in the MATCH request.

• When used with MATCH, the SET HOLDLIST command behaves as if HOLDLIST
were set to ALL.

• You cannot use BY HIGHEST in a MATCH request.

Merging Data Sources

14-4 Information Builders

Example Merging Data Sources
MATCH FILE EDUCFILE
SUM COURSE_CODE
BY EMP_ID
RUN
FILE EMPLOYEE
SUM LAST_NAME AND FIRST_NAME
BY EMP_ID BY CURR_SAL
AFTER MATCH HOLD OLD-OR-NEW
END
-******************************
-* PRINT CONTENTS OF HOLD FILE
-******************************
TABLE FILE HOLD
PRINT *
END

The merge phrase used in this example was OLD-OR-NEW. This means that records
from both the first (old) data source plus the records from the second (new) data source
will appear in the HOLD file.

Note that if your are working in an interactive environment, after you enter the command
RUN, a message indicates how many records were retrieved and—if you are entering the
MATCH request at the command line—prompts you for the name of the next data source
to be merged.

The output is:

 MATCH Processing

Creating Reports 14-5

MATCH Processing
The way MATCH merges data depends on the order in which you name data sources in
the request, the BY fields, display commands, and the merge phrases you use. In general,
however, processing is as follows:

1. MATCH retrieves requested records from the first data source you name and writes
them to a temporary work area.

2. MATCH retrieves requested records from the second data source you name and
writes them to a temporary work area.

3. It compares the retrieved records’ common high-order sort fields as specified in the
merge phrase (for example, OLD-OR-NEW). For more information, see Merge
Phrases on page 14-6.

4. It writes the merged results of the comparison to a temporary data source (if there
are more MATCH operations). It cycles through all data sources named until END is
encountered.

5. It writes final records to the HOLD file.

Merging Data Sources

14-6 Information Builders

Reference Merge Phrases
MATCH logic depends on the concept of old and new data sources. Old refers to the first
data source named in the request and new refers to the second data source. The result of
each merge creates a HOLD file until the END command is encountered. The following
diagram illustrates the general merge process:

The number of files to be merged

5 Files

2 Files

Old New

Old

Old New

New

Old New

Old New

HOLD

3 Files

Old New

Old New

HOLD

4 Files

Old New

Old New

Old New

HOLD

6 Files

Old New

NewOld

HOLD

NewOld

Old New

Old New

 MATCH Processing

Creating Reports 14-7

Syntax How to Specify Merge Phrases
AFTER MATCH HOLD [AS 'name'] mergetype

where:

AS 'name'

Specifies the name of the extract data source created by the MATCH command. The
default is HOLD.

mergetype

Specifies how the retrieved records from the files are to be compared.

The results of each phrase are graphically represented using Venn diagrams. In the
diagrams, the left circle represents the old data source, the right circle represents the
new data source, and the shaded areas represent the data that is written to the HOLD
file.

OLD-OR-NEW specifies that all records from both the old data source and the new data
source will appear in the HOLD file. This is the default if the AFTER MATCH line
is omitted.

Old New
OLD-AND-NEW specifies that records that appear in both the old and new data sources
appear in the HOLD file. (The intersection of the sets.)

Old New
OLD-NOT-NEW specifies that records that appear only in the old data source will
appear in the HOLD file.

Old New

Merging Data Sources

14-8 Information Builders

NEW-NOT-OLD specifies that records that appear only in the new data source will
appear in the HOLD file.

Old New

OLD-NOR-NEW specifies that only records that are in the old data source but not in the
new data source, or in the new data source but not in the old, will appear in the
HOLD file (the complete set of non-matching records from both data sources).

Old New
OLD specifies that all records from the old data source, and any matching records
from the new data source, will be merged into the HOLD file.

Old New
NEW specifies that all records from the new data source, and any matching records
from the old data source, will be merged into the HOLD file.

Old New

 MATCH Processing With Common High Order Sort Fields

Creating Reports 14-9

MATCH Processing With Common High Order Sort
Fields

When you construct your MATCH so that the first sort (BY) field (called the common
high-order sort field) used for both data sources is the same, the match compares the
values of the common high-order sort fields. If the entire sequence of sort fields is
common to both files, all are compared.

At least one pair of sort fields is required; field formats must be the same. In some cases,
you can redefine a field’s format using the DEFINE command. If the field names differ,
use the AS phrase to rename the second sort field to match the first. When the AS phrase
is used in a MATCH request, the specified field is automatically renamed in the resulting
HOLD file.

When you are merging files with common sort fields, the following assumptions are
made:

• If one of the sort fields is a subset of the other, a one-to-many relationship is
assumed.

• If neither of the sort fields is a subset of the other, a one-to-one relationship is
assumed. At most, one matching record is retrieved.

Example MATCH Processing With Common High Order Sort Fields
To understand common high order sort fields more clearly, consider some of the data
from the following data sources,

EMPLOYEE data source EDUCFILE data source

EMP_ID LAST_NAME EMP_ID COURSE_CODE

071382660 STEVENS 071382660 101

119329144 BANNING 21228911 103

112847612 SMITH 112847612 103

and this MATCH request:

MATCH FILE EMPLOYEE
SUM LAST_NAME BY EMP_ID
RUN
FILE EDUCFILE
SUM COURSE_CODE BY EMP_ID
AFTER MATCH HOLD OLD-OR-NEW
END

Merging Data Sources

14-10 Information Builders

MATCH processing occurs as follows:

• Since there is a common high-order sort field (EMP_ID), the MATCH logic begins
by matching the EMP_ID values in the first records of EMPLOYEE and
EDUCFILE.

• The first records match (each has the same EMP_ID), so Record 1 is written to the
HOLD file:

Record 1: 071382660 STEVENS 101

• The second records match (each has the value 112847612), so Record 2 is written to
the HOLD file:

Record 2: 112847612 SMITH 103

• When the fifth records do not match (EMPLOYEE has the value 119329144 and
EDUCFILE has the value 212289111), the record with the lower value is written to
the HOLD file and a space is inserted for the missing value:

Record 5: 119329144 BANNING

• Similarly, the 21228911 record exists only in EDUCFILE, and is written as:

Record 8: 21228911 103

The following code produces a report of the records in the HOLD file:

TABLE FILE HOLD
PRINT *
END

The output is:

 MATCH Processing With Common High Order Sort Fields

Creating Reports 14-11

Example Merging With a Common High Order Sort Field
This request combines data from the JOBFILE and PROD data sources. The sort fields
are JOBCODE and PROD_CODE, renamed as JOBCODE:

MATCH FILE JOBFILE
PRINT JOB_DESC
BY JOBCODE
RUN
FILE PROD
PRINT PROD_NAME
BY PROD_CODE AS 'JOBCODE'
AFTER MATCH HOLD OLD-OR-NEW
END

Example Merging Without a Common High Order Sort Field
If there are no common high-order sort fields, a match is performed on a
record-by-record basis. The following request matches the data and produces the HOLD
file:

MATCH FILE EMPLOYEE
PRINT LAST_NAME AND FIRST_NAME
BY EMP_ID
RUN
FILE EMPLOYEE
PRINT EMP_ID
BY LAST_NAME BY FIRST_NAME
AFTER MATCH HOLD OLD-OR-NEW
END

TABLE FILE HOLD
PRINT *
END

The retrieved records from the two data sources are written to the HOLD file; no values
are compared.

The output is:

Merging Data Sources

14-12 Information Builders

Fine Tuning MATCH Processing
You can fine tune the MATCH process using the PRINT and SUM commands. To
understand their difference, you should have an understanding of the one-to-many
relationship: SUM generates one record from many, while PRINT displays each
individual record. Through proper choices of BY fields, it is possible to use only the
SUM command and get the same result that PRINT would produce.

Example Using Display Commands in MATCH Processing
To best illustrate the effects of PRINT and SUM on the MATCH process, consider data
sources A and B and the series of requests that follow:

 A B

F1 F2 F3 F1 F4 F5

1 x 100 1 a 10
2 y 200 1 b 20
 2 c 30
 2 d 40

Request 1: This request sums the fields F2 and F3 from file A, sums the fields F4 and F5
from file B, and uses F1 as the common high order sort field.

MATCH FILE A
SUM F2 AND F3 BY F1
RUN
FILE B
SUM F4 AND F5 BY F1
AFTER MATCH HOLD OLD-OR-NEW
END

The HOLD file contains the following data:

F1 F2 F3 F4 F5

1 x 100 b 30
2 y 200 d 70

Note that the resulting file contains only 1 record for each common high order sort field.

Request 2: This request sums fields F2 and F3 from file A, prints fields F4 and F5 from
file B, and uses F1 as the common high order sort field.

MATCH FILE A
SUM F2 AND F3 BY F1
RUN
FILE B PRINT F4 AND F5 BY F1
AFTER MATCH HOLD OLD-OR-NEW
END

 Fine Tuning MATCH Processing

Creating Reports 14-13

The HOLD file contains:

F1 F2 F3 F4 F5

1 x 100 a 10
1 x 100 b 20
2 y 200 c 30
2 y 200 d 40

Note that the records from file A are duplicated for each record from file B.

Request 3: This request prints fields F2 and F3 from file A, sums fields F4 and F5 from
file B, and uses F1 as the common high order sort field.

MATCH FILE A
PRINT F2 AND F3 BY F1
RUN
FILE B
SUM F4 AND F5 BY F1
AFTER MATCH HOLD OLD-OR-NEW
END

The HOLD file contains:

F1 F2 F3 F4 F5

1 x 100 b 30
2 y 200 d 70

Note that each record from file A is included, but only the last record from file B for each
common high order sort field.

Request 4: This request prints fields F2 and F3 from file A, prints fields F4 and F5 from
file B, and uses F1 as the common high order sort field.

MATCH FILE A
PRINT F2 AND F3 BY F1
RUN
FILE B PRINT F4 AND F5 BY F1
AFTER MATCH HOLD OLD-OR-NEW
END

The HOLD file contains:

F1 F2 F3 F4 F5

1 x 100 a 10
1 0 b 20
2 y 200 c 30
2 0 d 40

Note the blank value for F2 and the 0 for F3.

Merging Data Sources

14-14 Information Builders

Request 5: This request sums the fields F2 and F3 from file A, sums the field F5 from
file B and sorts it by field F1, the common high order sort field, and by F4.

MATCH FILE A
SUM F2 AND F3 BY F1
RUN
FILE B
SUM F5 BY F1 BY F4
AFTER MATCH HOLD OLD-OR-NEW
END

The HOLD file contains:

F1 F2 F3 F4 F5

1 x 100 a 10
1 x 100 b 20
2 y 200 c 30
2 y 200 d 40

Note that the records for file A are printed for every occurrence of the record in file B.

Universal Concatenation
With Universal Concatenation, you can retrieve data from unlike data source types in a
single request; all data, regardless of source, appears to come from a single file. The
MORE phrase can concatenate all types of data sources (such as, FOCUS, DB2, IMS,
VSAM), provided they share corresponding fields with the same format. You can use
WHERE and IF selection tests in conjunction with MORE. For related information, see
Chapter 5, Selecting Records for Your Report.

To use MORE, you must divide your request into:

• One main request that retrieves the first data source and defines the data fields,
sorting criteria, and output format for all data.

• Subrequests that define the data sources and fields to be concatenated to the data of
the main request. The fields printed and sorted by the main request must exist in
each concatenated data source. If they do not, you must create them as virtual fields.

During retrieval, data is gathered from each data source in turn, then all data is sorted and
the output formatted as specified in the main request.

 Universal Concatenation

Creating Reports 14-15

Syntax How to Concatenate Data Sources
The MORE phrase, which is accessible within the TABLE and MATCH commands,
specifies how to concatenate data from sources with dissimilar Master Files.

The syntax for a request that concatenates data sources is

{TABLE|MATCH} FILE file1

 main request
MORE
FILE file2
 subrequest
MORE
FILE file3
 subrequest
MORE
 .
 .
 .
{END|RUN}

where:

TABLE|MATCH

Begins the request that concatenates the data sources.

file1

Is the name of the first data source.

main request

Is a request, without END or RUN, that retrieves the first data source and defines the
data fields, sorting criteria, and output format for all data. WHERE and IF criteria in
the main request apply only to file1.

When concatenating files within the TABLE command you can also define
calculated values for the first data source.

MORE

Begins a subrequest. There is no limit to the number of subrequests (other than
available memory).

FILE file2

Defines file2 as the second data source for concatenation.

subrequest

Is a subrequest. Subrequests can only include WHERE and IF phrases.

END|RUN

Ends the request.

Merging Data Sources

14-16 Information Builders

Example Concatenating Data Sources
Both the EMPLOYEE and the EXPERSON data sources contain employee information.
You can concatenate their common data into a single file:

• EMPLOYEE contains the field values EMP_ID=123456789 and
CURR_SAL=50.00.

• EXPERSON contains the field values SSN=987654321 and WAGE=100.00.

The following annotated request concatenates the two data sources:

 DEFINE FILE EXPERSON
1. EMP_ID/A9 = SSN;
 CURR_SAL/D12.2 = WAGE;
 END
2. TABLE FILE EMPLOYEE
 PRINT CURR_SAL
 BY EMP_ID
3. MORE
 FILE EXPERSON
 END

1. The request must re-map the field names and formats in the EXPERSON data source
to match those used in the main request.

2. The main request names the first data source in the concatenation, EMPLOYEE. It
also defines the print and sort fields for both data sources.

3. The MORE phrase starts the subrequest that concatenates the next data source,
EXPERSON. No display commands are allowed in the subrequest. IF and WHERE
criteria are the only report components permitted in a subrequest.

 Universal Concatenation

Creating Reports 14-17

Field Name and Format Matching
All fields referenced in the main request must either exist with the same names and
formats in all the concatenated files, or be re-mapped to those names and formats using
virtual fields. Referenced fields include those used in COMPUTE commands, headings,
aggregation phrases, sort phrases, and the PRINT, LIST, SUM, COUNT, WRITE, or
ADD commands.

A successful format match means that:

Usage Format Type Correspondence

A Format type and length must be equal.

I, F, D Format type must be the same.

P Format type and scale must be equal.

DATE (new) Format information (type, length, components, and order)
must always correspond.

DATE (old) Edit options must be the same.

DATE -TIME Format information (type, length, components, and order)
must always correspond.

Text (TX) fields and CLOB fields (if supported) cannot be concatenated.

Merging Data Sources

14-18 Information Builders

Example Matching Field Names and Formats
The following annotated example concatenates data from the EMPDATA and PAYHIST
data sources. Appendix A, Master Files and Diagrams, contains the Master Files
referenced in the request.

Tip:

PAYHIST is a fixed format file. You will need to issue a FILEDEF command in order to
use it. See the Developing Applications manual for information on the FILEDEF
command.

 DEFINE FILE EMPDATA
1. NEWID/A11 = EDIT (ID,'999-99-9999');
 END

 DEFINE FILE PAYHIST
1. NEWID/A11 = EDIT (SSN,'999-99-9999');
 CSAL/D12.2M = NEW_SAL;
 END

2. TABLE FILE EMPDATA
 HEADING
 "EMPLOYEE SALARIES"
 " "
3. PRINT CSAL
3. BY NEWID AS 'EMPLOYEE ID'
4. WHERE CSAL GT 65000

5. MORE
 FILE PAYHIST
6. WHERE NEW_SAL GT 500
 END

1. Defines NEWID with the same name and format as the sort field referenced in the
main request.

2. The main request contains all formatting for the resulting report and names the first
data source to be concatenated.

3. The main request also contains all printing and sorting information. The fields
printed and the sort fields must exist as real or virtual fields in each data source.

4. The WHERE criterion in the main request applies only to the EMPDATA data
source.

5. The MORE phrase concatenates the PAYHIST data source to the EMPDATA data
source.

6. This WHERE criterion applies only to the PAYHIST data source. Notice that it
references a field that is not defined in the EMPDATA data source.

 Merging Concatenated Data Sources

Creating Reports 14-19

In the resulting report, the EMPLOYEE ID values that start with 000 are from
EMPDATA and the values that start with 100 are from PAYHIST:

PAGE 1

 EMPLOYEE SALARIES

 EMPLOYEE ID SALARY
 ----------- ------

 000-00-0030 $70,000.00
 000-00-0070 $83,000.00
 000-00-0200 $115,000.00
 000-00-0230 $80,500.00
 000-00-0300 $79,000.00
 100-10-1689 $842.90
 $982.90
 100-11-9950 $508.75
 100-14-2166 $876.45
 100-15-5843 $508.75
 100-16-2791 $567.89
 100-16-4984 $1,236.78
 100-17-5025 $734.56
 100-18-9299 $567.89

Merging Concatenated Data Sources
You can use the MORE phrase in a MATCH request to merge up to six sets of
concatenated data sources.

You must meet all MATCH requirements in the main request. All data sources to be
merged must be sorted by at least one field with a common format.

The MATCH request results in a HOLD file containing the merged data. You can specify
how you want each successive file merged using an AFTER MATCH command. For
example, you can retain:

• All records from both files (OLD-OR-NEW). This is the default.

• Only records common to both files (OLD-AND-NEW).

• Records from the first file with no match in the second file (OLD-NOT-NEW).

• Records from the second file with no match in the first file (NEW-NOT-OLD).

• All non-matching records from both files; that is, records that were in either one of
the files but not both (OLD-NOR-NEW).

• All records from the first file with all matching records from the second file (OLD).

• All records from the second file with all matching records from the first file (NEW).

Merging Data Sources

14-20 Information Builders

Syntax How to Merge Concatenated Data Sources
The syntax for a MATCH request against concatenated data sources is:

1. MATCH FILE file1
 main request
 MORE
2. FILE file2
 subrequest
 MORE
3. FILE file3
 subrequest
 RUN
4. FILE file4
 main request
5. [AFTER MATCH merge_phrase]
 MORE
6. FILE file5
 subrequest
 MORE
7. FILE file6
 subrequest
 RUN
8. FILE file7
 main request
9. [AFTER MATCH merge_phrase]
 MORE
10.FILE file8
 subrequest
 MORE
11.FILE file9
 subrequest
 END

 Merging Concatenated Data Sources

Creating Reports 14-21

1. Starts the first answer set in the MATCH. File1 is the first data source in the first
answer set.

2. Concatenates file2 to file1 in the first MATCH answer set.

3. Concatenates file3 to file1 and file2 in the first MATCH answer set.

4. Starts the second answer set in the MATCH. File4 is the first data source in the
second answer set.

5. All data concatenated in the first answer set is merged with the data concatenated in
the second answer set using the AFTER MATCH merge_phrase in the second
answer set.

6. Concatenates file5 to file4 in the second MATCH answer set.

7. Concatenates file6 to file4 and file5 in the second MATCH answer set.

8. Starts the third answer set in the MATCH. File7 is the first data source in the third
answer set.

9. All merged data from the first and second answer sets, now a HOLD file, is merged
with the data concatenated in the third answer set using the AFTER MATCH
merge_phrase in the third answer set. This final set of merged data is stored in a
HOLD file.

10. Concatenates file8 to file7 in the third MATCH answer set.

11. Concatenates file9 to file7 and file8 in the third MATCH answer set.

Merging Data Sources

14-22 Information Builders

Using Sort Fields in MATCH Requests
If the data sources in the MATCH share common high-order sort fields with identical
names and formats, the MATCH process merges records with matching sort field values
from each of the files. If the two data sources in the MATCH have the same sort field
with different names, you can change one of the names with an AS phrase.

If the files in the MATCH do not share a high-order sort field, the fields are not
compared. Instead, the fields from the first record in each data source are merged to
create the first record in the HOLD file, and so on for all remaining records.

Example Merging Concatenated Data Sources With Common High
Order Sort Fields
The following annotated sample stored procedure illustrates MATCH with MORE, using
a common sort field:

1. DEFINE FILE EMPDATA
 CURR_SAL/D12.2M = CSAL;
 FIRST_NAME/A10 = FN;
 EID/A9 = PIN;
 END

 -*Start MATCH.

2. MATCH FILE EMPLOYEE
 SUM CURR_SAL AS 'CURRENT'
 FIRST_NAME AS 'FIRST'
 BY EID AS 'SSN'
 -*Concatenate file EMPDATA to EMPLOYEE to form first MATCH answer set.
3. MORE
 FILE EMPDATA
 RUN
 -*Second MATCH answer set:

4. FILE TRAINING
 PRINT EXPENSES
5. BY PIN AS 'SSN'
6. AFTER MATCH HOLD OLD-OR-NEW
 END

 -*Print merged file:

7. TABLE FILE HOLD
 PRINT *
 END

 Merging Concatenated Data Sources

Creating Reports 14-23

1. Defines the EMPDATA fields needed for concatenating it to EMPLOYEE.

2. Starts the MATCH and the main request in the concatenation. The main request
defines all printing and sorting for the concatenated files. The sort field is called SSN
in the resulting file.

3. Concatenates file EMPDATA to EMPLOYEE. This concatenated file becomes the
OLD file in the match.

4. Creates the NEW file in the match.

5. Uses an AS phrase to change the name of the sort field in the NEW file to the same
name as the sort field in the OLD file.

6. Defines the merge procedure. All records from the NEW file, the OLD file, and both
files are included in the final HOLD file.

7. Prints the values from the merged file.

The output is:

Merging Data Sources

14-24 Information Builders

Example Merging Concatenated Data Sources Without a Common Sort
Field
In this example, the merged data sources do not share a sort field:

DEFINE FILE EMPDATA
CURR_SAL/D12.2M = CSAL;
FIRST_NAME/A10 = FN;
EID/A9 = PIN;
END

-*Start MATCH

MATCH FILE EMPLOYEE
SUM CURR_SAL AS 'CURRENT'
 FIRST_NAME AS 'FIRST'
BY EID AS 'SSN'

-*Concatenate EMPDATA to EMPLOYEE to form the first MATCH answer set

MORE
FILE EMPDATA
RUN

-*Second MATCH answer set:

FILE TRAINING
PRINT EXPENSES
BY PIN AS 'EID'
AFTER MATCH HOLD OLD-OR-NEW
END

-*Print merged file:

TABLE FILE HOLD
PRINT *
END

The AS phrase changes the answer set. Since the sort fields no longer have the same
names, the fields are merged with no regard to matching records.

 Cartesian Product

Creating Reports 14-25

The output is:

Cartesian Product
Cartesian product enables you to generate a report containing all combinations of
non-related records or data instances in a multi-path request. This means that if a parent
segment has three child instances on one path and two child instances on another path,
when CARTESIAN is ON a request that references the parent segment and both children
will generate six records. When CARTESIAN is OFF, the same request will generate
only three records.

For related information about controlling how selection tests are applied to child
segments on independent paths, see Chapter 5, Selecting Records for Your Report.

Syntax How to Enable/Disable Cartesian Product
SET CARTESIAN = {OFF|ON}

where:

OFF

Disables Cartesian product. OFF is the default setting.

ON

Enables Cartesian product and generates all possible combinations of non-related
records.

SET CARTESIAN may also be issued within a request.

Merging Data Sources

14-26 Information Builders

Reference Usage Notes for Cartesian Product
• Cartesian product is performed on the lowest segment common to all paths, whether

or not a field in that segment is referenced.

• Short paths do not display in requests with Cartesian product.

• The SET CARTESIAN command is disabled when ACROSS is specified, and a
warning message is issued.

• The SUM display command and the TOT. prefix operator have no effect on
Cartesian product.

• SUM, COMPUTE, and WITHIN in combination with the PRINT display command
are performed on the Cartesian product.

• ON TABLE COLUMN-TOTAL is automatically generated on the Cartesian product.

• NOSPLIT is disabled if specified in combination with the SET CARTESIAN
command, and no warning message is issued.

• MATCH is not supported with the SET CARTESIAN command. A warning
message is not issued if MATCH is requested, and the request is processed as if
CARTESIAN is set to OFF.

• TABLEF is not supported with the SET CARTESIAN command.

Example Reporting With Cartesian Product
When CARTESIAN is set to ON, the following multi-path request produces a report
containing all possible combinations of models and standards for each car:

SET CARTESIAN=ON
TABLE FILE CAR
PRINT MODEL STANDARD
BY CAR
IF CAR EQ 'JAGUAR'
END

The output is:

 Cartesian Product

Creating Reports 14-27

When CARTESIAN is set to OFF (the default), the same request results in a report from
the CAR data source containing a list of models and standards without logical
relationships.

The output is:

Creating Reports 15-1

CHAPTER 15

Improving Report Processing

Topics:
• Rotating a Data Structure for

Enhanced Retrieval

• Optimizing Retrieval Speed for
FOCUS Data Sources

• Automatic Indexed Retrieval

• Data Retrieval Using TABLEF

• Preserving the Internal Matrix of Your
Last Report

The following high-performance methods are supported to
optimize data retrieval and report processing:

• Temporary rotation of network and hierarchical data
sources to create an alternate view of the data, from which
you can report. See Rotating a Data Structure for Enhanced
Retrieval on page 15-2.

• Automatic alternate file views with the AUTOPATH
feature. See Optimizing Retrieval Speed for FOCUS Data
Sources on page 15-4.

• Automatic indexed retrieval (AUTOINDEX), which takes
advantage of indexed fields used in equality or range tests.
See Automatic Indexed Retrieval on page 15-4.

• Retrieval of pre-sorted data using the TABLEF command.
See Data Retrieval Using TABLEF on page 15-6.

• Preserving a report’s internal matrix using the
SAVEMATRIX parameter. See Preserving the Internal
Matrix of Your Last Report on page 15-7.

Note: These techniques may not be available for the data source
you are working with. See your data adapter documentation to
determine if a technique is valid for your data source.

Improving Report Processing

15-2 Information Builders

Rotating a Data Structure for Enhanced Retrieval
If you are using certain network or hierachical data sources such as IMS, CA-IDMS/DB,
or FOCUS, you can rotate the data source, creating an alternate view which changes
some of the segment relationships and enables you to access the segments in a different
order. By reporting from an alternate view, you can do the following:

• Change the access path. For example, you can access data in a lower segment more
quickly by promoting that segment to a higher level.

• Change the path structure of a data source. This option is especially helpful if you
wish to create a report using several sort fields that are on different paths in the file.
By changing the view of the file hierarchy, all the desired sort fields can be on the
same path.

For example, consider the regular and alternate views below:

Regular View Alternate View

A

CB

D

C

DA

B

Since C is the root segment in the alternate view, particular instances of C can be selected
faster.

Syntax How to Request an Alternate View
To request an alternate view, add the name of a field—one found in the alternate root
segment—to the file name in the TABLE command, separated by a period (.):
TABLE FILE filename.fieldname

 Rotating a Data Structure for Enhanced Retrieval

Creating Reports 15-3

Reference Usage Notes for Restructuring Data
• If you use a non-indexed field, each segment instance is retrieved until the specified

record is found. This process is, therefore, less efficient than using an indexed field.

• When you use the alternate view feature on a particular child segment, the data
retrieved from that segment will be retrieved in physical order, not logical order.
This is so because the child becomes a root segment for the report request, and there
are no logical pointers between the child segments of different parents.

• Alternate view on an indexed field is a special case that uses the index for retrieval.
When you perform an alternate view on an indexed field, you enhance the speed of
retrieval. However, you must include an equality test on the indexed field, for
example WHERE (MONTH EQ 1) OR (MONTH EQ 2), in order to benefit from the
performance improvement.

• A field name specified in an alternate file view may not be qualified or exceed 12
characters.

• Automatic Indexed Retrieval (AUTOINDEX) is never invoked in a TABLE request
against an alternate file view.

Example Restructuring Data
Consider the following data structure, in which PROD_CODE is an indexed field:

 AREA

PROD_CODE
UNIT_CODE
RETAIL_PRICE
DELIVER_AMT

 DATE

To be used to select records

You could issue the following request to promote the segment containing PROD_CODE
to the top of the hierarchy, thereby enabling quicker access to the data in that segment.
TABLE FILE SALES.PROD_CODE
"SALES OF B10 DISTRIBUTED BY AREA"
SUM UNIT_SOLD AND RETAIL_PRICE
BY AREA
WHERE PROD_CODE EQ 'B10'
ON TABLE COLUMN-TOTAL
END

Improving Report Processing

15-4 Information Builders

Optimizing Retrieval Speed for FOCUS Data Sources
When the AUTOPATH parameter in set ON, an optimized retrieval path—that is, one in
which the lowest retrieved segment is the entry point—is selected dynamically. It is
equivalent to the alternate view syntax
TABLE FILE filename.fieldname

where:
fieldname

Is not indexed. Retrieval starts at the segment in which fieldname resides.

The system determines whether optimized retrieval is appropriate by analyzing the fields
referenced in a request and the data source structure. For more information on the
AUTOPATH parameter, see the Developing Applications manual.

Tip:
Another way to optimize data retrieval is by using intelligent partitioning in requests that do
not require retrieval from every partition. For information on efficiency considerations for
FOCUS data sources, including intelligent partitioning, see the Describing Data manual.

Automatic Indexed Retrieval
Automatic indexed retrieval (AUTOINDEX) optimizes the speed of data retrieval in
FOCUS and Fusion data sources. To take advantage of automatic indexed retrieval, a
TABLE request must contain an equality or range test on an indexed field in the highest
segment referenced in the request.

This method is not supported if a:

• Range test applies to a packed data value.

• Request specifies an alternate view (that is, TABLE FILE filename.fieldname).

• Request contains the code BY HIGHEST or BY LOWEST.

For related information on AUTOINDEX, see the Developing Applications manual.

Syntax How to Use Indexed Retrieval
SET AUTOINDEX = {ON|OFF}

where:
ON

Uses indexed data retrieval for optimized speed when possible. The request must
contain an equality or range test on an indexed field in the highest segment
referenced in the request.

OFF

Uses sequential data retrieval unless a request specifies an indexed view (TABLE
FILE filename.indexed_fieldname) and contains an equality test on
indexed_fieldname. In that case, indexed data retrieval is automatically performed.
This value is the default; however, the default may have been changed in a supported
profile. You can check your setting by issuing the ? SET command.

 Automatic Indexed Retrieval

Creating Reports 15-5

Example Using Indexed Retrieval
The following Master File is referenced in the examples that follow:
FILENAME=SALES,SUFFIX=FOC,
 SEGNAME=STOR_SEG,SEGTYPE=S1,
 FIELDNAME=AREA,ALIAS=LOC,FORMAT=A1,$
 SEGNAME=DATE_SEG,PARENT=STOR_SEG,SEGTYPE=SH1,
 FIELDNAME=DATE,ALIAS=DTE,FORMAT=A4MD, $
 SEGNAME=DEPT,PARENT=DATE_SEG,SEGTYPE=S1,
 FIELDNAME=DEPARTMENT,ALIAS=DEPT,FORMAT=A5,FIELDTYPE=I,$
 FIELDNAME=DEPT_CODE,ALIAS=DCODE,FORMAT=A3,FIELDTYPE=I,$
 FIELDNAME=PROD_TYPE,ALIAS=PTYPE,FORMAT=A10,FIELDTYPE=I,$
 SEGNAME=INVENTORY,PARENT=DEPT,SEGTYPE=S1,$
 FIELDNAME=PROD_CODE,ALIAS=PCODE,FORMAT=A3,FIELDTYPE=I,$
 FIELDNAME=UNIT_SOLD,ALIAS=SOLD,FORMAT=I5,$
 FIELDNAME=RETAIL_PRICE,ALIAS=RP,FORMAT=D5.2M,$
 FIELDNAME=DELIVER_AMT,ALIAS=SHIP,FORMAT=I5,$

The following procedure contains an equality test on DEPT_CODE and PROD_CODE.
DEPT_CODE is used for indexed retrieval since it is in the higher of the referenced
segments.
SET AUTOINDEX=ON
TABLE FILE SALES
SUM UNIT_SOLD RETAIL_PRICE
IF DEPT_CODE EQ 'H01'
IF PROD_CODE EQ 'B10'
END

If your TABLE request contains an equality or range test against more than one indexed
field in the same segment, AUTOINDEX uses the first index referenced in that segment
for retrieval. The following stored procedure contains an equality test against two
indexed fields. Since DEPT_CODE appears before PROD_TYPE in the Master File,
AUTOINDEX uses DEPT_CODE for retrieval.
SET AUTOINDEX=ON
TABLE FILE SALES
SUM UNIT_SOLD AND RETAIL_PRICE
IF PROD_TYPE EQ 'STEREO'
IF DEPT_CODE EQ 'H01'
END

Indexed retrieval is not invoked if the equality or range test is run against an indexed field
that does not reside in the highest referenced segment. In the following example, indexed
retrieval is not performed because the request contains a reference to AREA, a field in the
STOR_SEG segment:
SET AUTOINDEX=ON
TABLE FILE SALES
SUM UNIT_SOLD AND RETAIL_PRICE
BY AREA
IF PROD_CODE EQ 'B10'
IF PROD_TYPE EQ 'STEREO'
END

Improving Report Processing

15-6 Information Builders

Data Retrieval Using TABLEF
TABLEF is a variation of the TABLE command that provides a fast method of retrieving
data that is already stored in the order required for printing and no additional sorting is
required

Using TABLEF, records are retrieved in the logical sequence from the data source. The
standard report request syntax applies, subject to the following rules:

• Any BY phrases must be compatible with the logical sequence of the data source.
BY phrases are used only to establish control breaks, not to change the order of the
records.

• ACROSS phrases are not permitted.

• Multiple display commands are not permitted. Only one display command may be
used.

• After the report is executed, RETYPE, HOLD, and SAVE are not available.
However, you can produce an extract file if you include ON TABLE HOLD or ON
TABLE SAVE as part of the request.

• NOSPLIT is not compatible with the TABLEF command and produces a FOC037
error message.

• TABLEF can be used with HOLD files and other non-FOCUS data sources when the
natural sort sequence of both the request and the data are the same.

• TABLEF is not supported with SET EMPTYREPORT. When a TABLEF request
retrieves zero records, EMPTYREPORT behaves as if EMPTYREPORT were set to
ON.

• The DST. prefix operator is not permitted.

Example Printing Using Fast Table Retrieval
If you previously created a HOLD file from the EMPLOYEE data source, sorted by the
CURR_SAL, LAST_NAME, and FIRST_NAME fields, you can issue the following
TABLEF request:
TABLEF FILE HOLD
PRINT CURR_SAL AND LAST_NAME AND FIRST_NAME
END

 Preserving the Internal Matrix of Your Last Report

Creating Reports 15-7

Preserving the Internal Matrix of Your Last Report
An internal matrix is generated with each TABLE, FML, GRAPH, and MATCH request.
These requests are available for the duration of your session, or until you generate a new
report or graph that overwrites it.

While a report (or graph) request is available, you can:

• Extract and save data from it using the HOLD, SAVE, and SAVB commands.

• Redisplay it using the RETYPE or REPLOT commands.

If you wish to save the matrix from your last request to protect it from being over-written
when using Dialogue Manager commands, you can activate the SET SAVEMATRIX
feature.

Note: SET SAVEMATRIX is not available with the TABLEF command.

Syntax How to Save an Internal Matrix
SET SAVEMATRIX = {ON|OFF}

where:
ON

Saves the internal matrix from the last report request, preventing it from being
overwritten.

OFF

Overwrites the internal matrix for each request. This value is the default.

Example Saving a Report’s Internal Matrix
The following request creates a report, then executes a procedure that contains a Dialogue
Manager command (which would otherwise overwrite the internal matrix), and recalls the
report using the RETYPE command:
SET SAVEMATRIX = ON
TABLE FILE EMPLOYEE
.
.
.
END
EX DMFEX
RETYPE

Creating Reports 16-1

CHAPTER 16

Creating Financial Reports

Topics:
• Reporting With FML

• Creating Rows From Data

• Performing Inter-Row Calculations

• Referring to Rows

• Referring to Columns

• Referring to Cells

• Using Subroutines in Calculations

• Supplying Data Directly in the FML
Request

• Inserting Rows of Free Text

• Adding Columns to an FML Report

• Creating Recursive Models

• Formatting an FML Report

• Suppressing Tagged Rows

• Saving and Retrieving Intermediate
Report Results

• Creating HOLD Files From FML
Reports

The Financial Modeling Language (FML) is designed for the
special needs associated with creating, calculating, and
presenting financially oriented data such as balance sheets,
consolidations, or budgets. These reports are distinguished from
other reports because calculations are inter-row as well as
inter-column and each row or line represents a unique entry or
series of entries that can be aggregated directly from the input
data or calculated as some function of the data.

Creating Financial Reports

16-2 Information Builders

Reporting With FML
FML is an integrated extension of the TABLE command. By adding the FOR phrase and
the RECAP command, you can handle a vastly expanded range of applications.

Used in conjunction with Dialogue Manager, FML can be used to perform “what if”
scenarios and develop complete decision support systems. These systems can take
advantage of business intelligence features, such as statistical analysis and graphics, in
addition to standard financial statements.

Procedures using FML are not hard-wired to the data. As in any other report request,
these procedures can easily be changed. FML includes the following facilities:

• Row/column formatting: You can easily specify results in a row-by-row,
column-by-column fashion (see Performing Inter-Row Calculations on page 16-12).

• Intermediate results: You can post FML results to an external file and pick them up
at a later time for analysis. This is useful when intermediate results are developed
and a final procedure consolidates the results later (see Saving and Retrieving
Intermediate Report Results on page 16-32).

• Inline data entry: FML enables you to specify constants from within the procedure in
addition to the data values retrieved from your data source (see Supplying Data
Directly in the FML Request on page 16-24).

• Recursive reports: You can produce reports where the results from the end of one
time period or column become the starting balance in the next. For example, you
could use recursive reports to produce a cash flow projection (see Creating
Recursive Models on page 16-28).

 Reporting With FML

Creating Reports 16-3

Example Sample FML Request
The following annotated example illustrates several of the points discussed in Reporting
With FML on page 16-2. Notice the similarity of this example to a typical reporting
request, except for the addition of the two FML phrases. The example produces a simple
asset sheet, contrasting the results of two years. Though the example is relatively simple
and the results brief, an FML report could be quite comprehensive, using Dialogue
Manager to create a flexible, interactive model.
 TABLE FILE FINANCE

 HEADING CENTER
 "COMPARATIVE ASSET SHEET </2"
 SUM AMOUNT ACROSS HIGHEST YEAR

 WHERE YEAR EQ '1983' OR '1982'
1. FOR ACCOUNT
2. 1000 AS 'UTILITY PLANT' LABEL UTP OVER

2. 1010 TO 1050 AS 'LESS ACCUMULATED DEPRECIATION' LABEL UTPAD OVER
3. BAR OVER
4. RECAP UTPNET=UTP-UTPAD; AS 'TOTAL PLANT-NET' OVER

 BAR OVER
 2000 TO 3999 AS 'INVESTMENTS' LABEL INV OVER
5. "CURRENT ASSETS" OVER

 4000 AS 'CASH' LABEL CASH OVER
 5000 TO 5999 AS 'ACCOUNTS RECEIVABLE-NET' LABEL ACR OVER
 6000 AS 'INTEREST RECEIVABLE' LABEL ACI OVER

 6500 AS 'FUEL INVENTORY' LABEL FUEL OVER
 6600 AS 'MATERIALS AND SUPPLIES' LABEL MAT OVER
 6900 AS 'OTHER' LABEL MISC OVER

 BAR OVER
 RECAP TOTCAS = CASH+ACR+ACI+FUEL+MAT+MISC ; AS 'TOTAL CURRENT ASSETS' OVER
 BAR OVER

 7000 AS 'DEFERRED DEBITS' LABEL DEFDB OVER
 BAR OVER
6. RECAP TOTAL=UTPNET+INV+TOTCAS+DEFDB; AS 'TOTAL ASSETS' OVER

 BAR AS '='
 FOOTING CENTER
 "</2 *** PRELIMINARY ASSET SHEET BASED ON UNAUDITED FIGURES ***"

 END

Creating Financial Reports

16-4 Information Builders

1. FOR and OVER are FML phrases that enable you to structure the report on a
row-by-row basis.

2. LABEL assigns a variable name to a row item for use in a RECAP calculation.

1000 and 1010 TO 1050 are tags that identify the data values of the FOR field,
ACCOUNT. A report row can be associated with a tag that represents a single data
value (like 1000), multiple data values, or a range of values (like 1010 TO 1050).

3. BAR enables you to underline a column of numbers before performing a RECAP
calculation.

4. The RECAP command creates a new value based on values already identified in the
report with LABEL. In this case, the value UTPNET is derived from UTP and
UTPAD and is renamed TOTAL PLANT-NET with an AS phrase to provide it with
greater meaning on the report.

5. Like underlines, free text can be incorporated at any point in an FML report.

6. Notice that this RECAP command derives a total (TOTAL ASSETS) from values
retrieved directly from the data source and from values derived from previous
RECAP computations (UTPNET and TOTCAS).

The output is:
 COMPARATIVE ASSET SHEET

 YEAR
 1983 1982
--
UTILITY PLANT $1,430,903 $1,294,611
LESS ACCUMULATED DEPRECIATION $249,504 $213,225
 ---------- -------
TOTAL PLANT-NET $1,181,399 $1,081,386
 ---------- -------
INVESTMENTS $818 $5,639
CURRENT ASSETS
CASH $4,938 $4,200
ACCOUNTS RECEIVABLE-NET $28,052 $23,758
INTEREST RECEIVABLE $15,945 $10,206
FUEL INVENTORY $35,158 $45,643
MATERIALS AND SUPPLIES $16,099 $12,909
OTHER $1,264 $1,743
 ---------- -------
TOTAL CURRENT ASSETS $101,456 $98,459
 ---------- -------
DEFERRED DEBITS $30,294 $17,459
 ---------- -------
TOTAL ASSETS $1,313,967 $1,202,943
 ========== ==========

***PRELIMINARY ASSET SHEET BASED ON UNAUDITED FIGURES ***

 Creating Rows From Data

Creating Reports 16-5

Creating Rows From Data
A normal TABLE request sorts the lines of the report according to the BY phrase you
use. The data retrieved is either sorted low-to-high or high-to-low, as requested. The lines
may be limited by a screening phrase to a specific subset, but:

• They appear in a sort order.

• Lines appear only for values that are retrieved from the file.

• You can only insert free text between the rows when a sort field changes value, such
as:
ON DIVISION SUBFOOT

• You can only insert calculations between rows when a sort field changes value, such
as:
ON DIVISION RECAP

In contrast, the FML FOR phrase allows you to structure your report row-by-row. This
organization gives you greater control over the data that is incorporated into a report and
over its presentation. You can:

• Report on specific data values for a field in a data source and combine particular data
values under a common label, for use in calculations.

• Type data directly into the request to supplement data that is retrieved from the data
source.

• Include text, underlines, and calculations at points in the report that are not related to
sort breaks.

• Perform recursive processing in which the result of an interim calculation is saved
and then used as the starting point for a subsequent calculation.

• Suppress the display of rows for which no data is retrieved.

• Identify rows by labels and columns by numbers so that you can point to the
individual cells formed at each intersection (as on a spreadsheet).

Creating Financial Reports

16-6 Information Builders

Syntax How to Specify Rows
The syntax for specifying a fixed set of rows is
FOR fieldname [NOPRINT]
value [OR value OR...] OVER
.
.
[value OR value]
END

where:
fieldname

Is a field name in the data source.
value

Is the value describing the data that is retrieved for this row of the report.

Note that a tag value for a FOR field (like 1010) may be referred to only once in an FML
request. However, once the data is retrieved and stored with a unique tag, you can use the
retrieved values more than once.

Example Creating Rows From Data
Assume you have a simple data source with financial data for each corporate account, as
follows:
CHART OF ACCOUNTS

ACCOUNT DESCRIPTION

1010 CASH ON HAND
1020 DEMAND DEPOSITS
1030 TIME DEPOSITS
1100 ACCOUNTS RECEIVABLE
1200 INVENTORY
. .
. .
. .

 Creating Rows From Data

Creating Reports 16-7

Using the FOR phrase in FML, you can issue the following TABLE request in which
each value of ACCOUNT is represented by a tag (1010, 1020, etc.) and displays as a
separate row:
TABLE FILE LEDGER
SUM AMOUNT
FOR ACCOUNT
1010 OVER
1020 OVER
1030 OVER
1100 OVER
1200
END

The output is:
 AMOUNT

1010 8,784
1020 4,494
1030 7,961
1100 18,829
1200 27,307

Changing Row Titles
Tags identify the data values of the FOR field in an FML report. Using the AS phrase,
you can assign a row title that is different from the tag to each row of the report.

Example Changing Row Titles
In the following example, the row titles CASH ON HAND and DEMAND DEPOSITS
provide meaningful identifications for the corresponding tags.
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS'
END

Note that single quotation marks are necessary only if the row title you are assigning has
embedded blanks.

The output is:
 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494

If no AS phrase is included, the first value will be displayed as a label in the report.

Creating Financial Reports

16-8 Information Builders

Creating Rows From Multiple Records
There are different ways to combine multiple records from your data sources into an
FML report row. You can use:

• The OR phrase to sum the values of two or more tags in a single expression.

• The TO phrase to identify a range of values on which to report.

• A mask to specify a group of tag values without having to name each one.
A value retrieved from multiple records can only be included in a single row.
Multiple tags referenced in any of these ways are evaluated first for an exact reference or
for the end points of a range, next for a mask, and finally within a range. For example, if
a value is specified as an exact reference and then as part of a range, the exact reference
is displayed. Note that the result will be unpredictable if a value fits into more than one
row whose tags have the same priority (for example, an exact reference and the end point
of a range.)

In addition to these methods, you can extract multiple tags for a row from an external file.

Syntax How to Sum Values in Rows With the OR Phrase
To sum the values of two or more tags in a single report row, use the OR phrase in the
FOR phrase. The syntax is:
FOR fieldname
tag1 OR tag2 [OR tagn...]
.
.
.

where:
fieldname

Is a field name in the data source.
tag1, tag2, tagn

Are the tags whose values are to be summed.

Example Summing Values in Rows
The following model sums the values of three tags (1010, 1020, 1030) as CASH.
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 OR 1020 OR 1030 AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY'
END

The output is:
 AMOUNT

CASH 21,239
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

 Creating Rows From Data

Creating Reports 16-9

Syntax How to Identify a Range of Values With the TO Phrase
Instead of using a specific tag for a report line, you can identify a range of tag values by
including the TO phrase within the FOR phrase. The syntax is
tagvalue1 TO tagvalue2

where:
tagvalue1

Is the lower limit of the range.
TO

Is the required phrase.
tagvalue2

Is the upper limit of the range.

Example Identifying a Range of Values
Since CASH accounts in the LEDGER system are accounts 1010, 1020, 1030, you can
specify the range 1010 to 1030:
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 TO 1030 AS 'CASH'
END

Syntax How to Use Masking Tags
If the tag field has a character (alphanumeric) format, you can perform a masked match.
Use the dollar sign character ($) as the mask. For instance, the tag
A$$D

matches any four-character value beginning with A and ending with D. The two middle
places can be any character. This is useful for specifying a whole group of tag values
without having to name each one.

Example Using Masking Tags to Match a Group of Tags
In this example the amounts associated with all four-character accounts that begin with
10, expressed with a mask as 10$$, will be used to produce the CASH row of the report.
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
10$$ AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY'
END

Creating Financial Reports

16-10 Information Builders

Example Using Tags From External Files
In this example, the tags for a row of the FML report come from an external file called
CASHSTUF, which contains the tags:
1010
1020
1030

The following TABLE request uses the tags from the external file, summing the amounts
in accounts 1010, 1020, and 1030 into the CASH row of the FML report:
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
(CASHSTUF) AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE'
END

Notice that the file name must be enclosed in parentheses.

Using the BY Phrase in FML Requests
Only one FOR phrase is permitted in a TABLE request. It substitutes in part for a BY
phrase, which controls the sort sequence. However, the request can also include up to 32
BY phrases. In general, BY phrases specify the major (outer) sort fields in FML reports,
and the FOR phrase specifies the minor (inner) sort field.

 Creating Rows From Data

Creating Reports 16-11

Example Combining BY and FOR Phrases in an FML Request
In this example the report results for ACCOUNT (the inner sort field) are sorted by
REGION (the outer sort field):
DEFINE FILE REGION
CUR_YR=E_ACTUAL;
LAST_YR=.831*CUR_YR;
REGION/A4=IF E_ACTUAL NE 0 OR E_BUDGET NE 0 THEN 'EAST' ELSE 'WEST';
END

TABLE FILE REGION
HEADING CENTER
"CURRENT ASSETS FOR REGION <REGION"
" "
SUM CUR_YR LAST_YR
BY REGION NOPRINT AND PAGE-BREAK
FOR ACCOUNT
10$$ AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY' OVER
BAR OVER
RECAP CUR_ASSET/I5C = R1 + R2 + R3;
END

The output is:
 CURRENT ASSETS FOR REGION EAST

 CUR_YR LAST_YR
 ------ -------

CASH 9,511.00 7,903.64
ACCOUNTS RECEIVABLE . .
INVENTORY . .
 ------ -------
CUR_ASSET 9,511 7,903

Note that a new report page is produced for each region in the company.

A sort field value can be used in a RECAP command to allow the model to take different
actions within each major sort break. For instance, the following calculation would
compute a non-zero value only for the EAST region:
RECAP X=IF REGION EQ 'EAST' THEN .25*CASH ELSE 0; AS 'AVAILABLE FOR
DIVIDENDS'

For more information, see Performing Inter-Row Calculations on page 16-12.

Creating Financial Reports

16-12 Information Builders

Performing Inter-Row Calculations
The RECAP command allows you to perform calculations on data in the rows of the
report to produce new rows. You must supply the name and format of the field that will
receive the result of the calculation, and an expression that defines the calculation you
wish to perform. Since RECAP calculations are performed among rows, each row in the
calculation must be uniquely identified. FML supplies default row labels for this purpose
(R1, R2, etc). However, you may assign more meaningful labels. For details, see
Referring to Rows on page 16-13.

Syntax How to Define Inter-Row Calculations
RECAP fieldname[/format]=expression;
[AS 'text']

where:
RECAP

Is the command name and is required. It should begin on a line by itself.
fieldname

Is the name you assign to the calculated value. The name can be up to 66 characters
long, and must start with an alphabetic character. This field name can also serve as
an explicit label. See Referring to Rows on page 16-13.

format

Is the field’s USAGE format. It cannot exceed the column width. The default is the
format of the column in which the calculated value will be displayed.

expression

Can be any calculation available with the DEFINE command (including IF... THEN
... ELSE syntax, special functions, and user-written subroutines; excluding
DECODE, EDIT, and fields in date format). The expression may extend to as many
lines as it requires; a semicolon is required at the end of the expression. For related
information, see Using Subroutines in Calculations on page 16-22 and the Using
Functions manual.

The expression can include references to specific rows using the default FML
positional labels (R1, R2, etc) or it can refer to rows, columns, and cells using a
variety of flexible notation techniques. For details, see Referring to Rows on page
16-13, Referring to Columns on page 16-16, and Referring to Cells on page 16-20.

AS 'text'

Allows you to assign a different name to the RECAP expression for the report.
Enclose the text in single quotation marks.

 Referring to Rows

Creating Reports 16-13

Reference Usage Notes for RECAP
• RECAP expressions refer to other rows in the model using their labels (either

explicit or default). Labels referred to in a RECAP expression must also be specified
in the report request.

• The format specified for the RECAP result overrides the format of the column. In the
following example,
RECAP TOTVAL/D6.2S=IF R1 GT R4 THEN R4 ELSE R1;
AS 'REDUCED VALUE'

TOTVAL/D6.2S displays the result as six positions with two decimal places (and
displays blanks if the value was zero) in each column of the report, regardless of the
format of the data in the column. One use of this feature might be to display
percentages in a column of whole numbers.

• Subtotals are not supported in FML.

• In environments that support the RETYPE command, note that RETYPE does not
recognize labels in FML with field format redefinition.

Referring to Rows
FML assigns a default positional label to each tagged, DATA, RECAP, and PICKUP
row. These positional labels are automatically prefixed with the letter R, so that the first
such row in the model is R1, the second is R2, etc. You can use these labels to refer to
rows in RECAP expressions. (Default labels are not assigned to rows that contain
underlines, blank lines, or free text since these row types do not need to be referenced in
expressions.)

When you refer to rows in a RECAP expression, you can:

• Use the positional row label assigned by FML.

• Create an explicit row label of your own.

• Mix positional and explicit row labels.

If you assign an explicit label, the positional label (R1, R2, etc,) is retained internally.

Note that an explicit label is not needed for a RECAP row because the field name on the
left of the equal sign can be used as a label.

Creating Financial Reports

16-14 Information Builders

Syntax How to Assign an Explicit Row Label
rowtype AS 'text' LABEL label OVER

where:
rowtype

Can be a tag, DATA, or PICKUP row.
AS 'text'

Allows you to assign a different name to the row for the report. Enclose the text in
single quotation marks.

label

Can be up to 66 characters and cannot have blanks or special characters. Each
explicit label you assign must be unique.

Example Referring to Default Row Labels in RECAP Expressions
In this example, FML assigns account 1010 the implicit label R1; account 1020, the
implicit label R2; and account 1030, the implicit label R3. Since no label is assigned to a
BAR row, the RECAP row is assigned the implicit label R4.
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH = R1 + R2 + R3; AS 'TOTAL CASH'
END

The output is:
 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

TOTAL CASH 21,239

 Referring to Rows

Creating Reports 16-15

Example Referring to Explicit Row Labels in RECAP Expressions
The following request assigns the labels CASH, AR, and INV to three tag rows, which
are referenced in the RECAP expression.
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
10$$ AS 'CASH' LABEL CASH OVER
1100 AS 'ACCOUNTS RECEIVABLE' LABEL AR OVER
1200 AS 'INVENTORY' LABEL INV OVER
BAR OVER
RECAP CURASST/I5C= CASH + AR + INV;
END

The output is:
 AMOUNT

CASH 21,239
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

CURASST 67,375

Note that the RECAP command could subsequently be referred to by the name
CURASST, which functions as an explicit label:
RECAP CURASST/I5=CASH+AR+INV;

Example Using Labels to Repeat Rows
In certain cases, you may wish to repeat an entire row later in your report. For example,
the CASH account can appear in the Asset statement and Cash Flow statements of a
financial analysis, as shown below:
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
"ASSETS" OVER
10$$ AS 'CASH' LABEL TOTCASH OVER
.
.
"CASH FLOW" OVER
RECAP SAMECASH/I5C=TOTCASH; AS 'CASH'
END

When you refer to the CASH row the second time, you can use a RECAP calculation
(with a new name) and refer to the label, either explicitly (TOTCASH) or implicitly (R1),
in the row where CASH was first used.

Creating Financial Reports

16-16 Information Builders

Referring to Columns
An FML report can refer to explicit columns as well as explicit rows. You can refer to
columns using:

• Column numbers.

• Contiguous column notation in RECAP expressions--for example (2,5) to represent
columns 2 through 5.

• Column addressing.

• A factor to represent every other column, or every third column, etc.

• Column values.

Referring to Column Numbers
A calculation may be performed for one column or for a specific set of columns. To
identify the columns, you place the column number in parentheses after the label name.

Example Referring to Column Numbers
DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
END

TABLE FILE LEDGER
SUM CUR_YR AS 'CURRENT,YEAR'
LAST_YR AS 'LAST,YEAR'
FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH/I5C = R1 + R2 + R3; AS 'TOTAL CASH' OVER
" " OVER
RECAP GROCASH(2)/F5.2=100*TOTCASH(1)/TOTCASH(2) - 100;
AS 'CASH GROWTH(%)'
END

In the second RECAP expression, note that:

• TOTCASH(1) refers to total cash in column 1.

• TOTCASH(2) refers to total cash in column 2.

• The resulting calculation is displayed in column 2 of the row labeled CASH
GROWTH(%).

The RECAP is only calculated for the column specified.

 Referring to Columns

Creating Reports 16-17

The output is:
 CURRENT LAST
 YEAR YEAR
 ------- ----
CASH ON HAND 8,784 7,214
DEMAND DEPOSITS 4,494 3,482
TIME DEPOSITS 7,961 6,499
 ------- -----
TOTAL CASH 21,239 17,195

CASH GROWTH(%) 23.52

After data retrieval is completed, a single column is calculated all at once, and multiple
columns one by one.

Referring to Contiguous Columns
When a set of contiguous columns is needed within a RECAP, you can separate the first
and last column numbers with commas. For example, DIFFERENCE (2,5) indicates that
you want to compute the results for columns 2 through 5.

Example Recapping Over Contiguous Columns
In this example the RECAP calculation for ATOT occurs only for columns 2 and 3, as
specified in the request. No calculation is performed for column 1.
DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
NEXT_YR/I5C=1.13*CUR_YR + 222;
END

TABLE FILE LEDGER
SUM NEXT_YR CUR_YR LAST_YR
FOR ACCOUNT
10$$ AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY' OVER
BAR OVER
RECAP ATOT(2,3)/I5C = R1 + R2 + R3;
AS 'ASSETS--ACTUAL'
END

The output is:
 NEXT_YR CUR_YR LAST_YR
 ------- ------ -------
CASH 25,991 21,239 17,195
ACCOUNTS RECEIVABLE 21,941 18,829 15,954
INVENTORY 31,522 27,307 23,329
 ------- ------ -------
ASSETS--ACTUAL 67,375 56,478

Creating Financial Reports

16-18 Information Builders

Referring to Column Addresses
When you need a calculation not for every column, but for every other, or every third
column, you can supply a factor, or column address, to do this. Column addressing is
particularly useful when several data fields are displayed within each value of a column
sort.

Syntax How to Use Column Addressing
The left-hand side of the expression has the form
fieldname(s,e,i)[/format]=

where:
fieldname

Is the name you assign to the calculated value.
s

Is the starting column.
e

Is the ending column (may be * to denote all columns).
i

Is the increment factor.
format

Is the field’s USAGE format. The default value is the format of the original column.

Example Applying Column Addressing
In the following statement, there are two columns for each month:
SUM ACTUAL AND FORECAST ACROSS MONTH

If you want to perform a calculation only for the ACTUAL data, you can control the
placement of the results with a RECAP in the form:
RECAP VALUE(1,*,2)=expression;

The asterisk means to continue the RECAP for all odd-numbered columns (beginning in
column 1, with an increment of 2, for all columns).

 Referring to Columns

Creating Reports 16-19

Referring to Relative Column Addresses
A calculation can refer to a column plus or minus 1, 2, etc., relative to a starting point.
You can use an asterisk (*) to indicate “this column”—that is, the column to which the
reference is being made. For example,
COMP=FIX(*)-FIX(*-1);

can refer to the change in fixed assets from one period to the next. The reference to
COMP=FIX(*); is equivalent to COMP=FIX;.

When referring to a prior column, it must have already been retrieved or its value is zero.

Example Applying Relative Column Addressing
This example computes the change in cash (CHGCASH) for columns 1 and 2.
DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
NEXT_YR/I5C=1.13*CUR_YR + 222;
END

TABLE FILE LEDGER
SUM NEXT_YR CUR_YR LAST_YR
FOR ACCOUNT
10$$ AS 'TOTAL CASH' LABEL TOTCASH OVER
" " OVER
RECAP CHGCASH (1,2)/I5SC = TOTCASH(*) - TOTCASH(*+1);
AS 'CHANGE IN CASH' OVER
END

The output is:
 NEXT_YR CUR_YR LAST_YR
 ------- ------ -------
TOTAL CASH 25,991 21,239 17,195

CHANGE IN CASH 4,752 4,044

Creating Financial Reports

16-20 Information Builders

Referring to Column Values
When a report is sorted using the ACROSS phrase, all of the retrieved values are aligned
under their appropriate columns. Each column has a title consisting of one value of the
ACROSS field. The entire column of data can be directly addressed by this value in a
RECAP calculation.

Example Referring to a Column by Its Value
The following request would produce a report with YEAR as the heading across the top
of the report, and year values (19nn to 19nn) as column titles below it:
SUM AMOUNT ACROSS YEAR
.
.
.

You could then issue a RECAP command like the following for specific columns of data:
RECAP FACTOR=IF YEAR LT 1975 THEN .09*COST ELSE ESTCOST;

Referring to Cells
You can refer to columns and rows using a form of cell notation that identifies the
intersection of a row and a column as (r, c).

Syntax How to Use Cell Notation for Rows and Columns
A row and column can be addressed in an expression by the notation
E(r,c)

where:
E

Is a required constant.
r

Is the row number.
c

Is the column number. Use an asterisk (*) to indicate the current column.

 Referring to Cells

Creating Reports 16-21

Example Referring to Columns Using Cell Notation
In this request, two RECAP expressions derive VARIANCEs (EVAR and WVAR) by
subtracting values in four columns (1, 2, 3, 4) in row three (PROFIT); these values are
identified using cell notation (r,c).
TABLE FILE REGION
SUM E_ACTUAL E_BUDGET W_ACTUAL W_BUDGET
FOR ACCOUNT
3000 AS 'SALES' OVER
3100 AS 'COST' OVER
BAR OVER
RECAP PROFIT/I5C = R1 - R2; OVER
" " OVER
RECAP EVAR(1)/I5C = E(3,1) - E(3,2);
AS 'EAST--VARIANCE' OVER
RECAP WVAR(3)/I5C = E(3,3) - E(3,4);
AS 'WEST--VARIANCE'
END

The output is:
 E_ACTUAL E_BUDGET W_ACTUAL W_BUDGET
 -------- -------- -------- --------
SALES 6,000 4,934 7,222 7,056
COST 4,650 3,760 5,697 5,410
 -------- -------- -------- --------
PROFIT 1,350 1,174 1,525 1,646

EAST--VARIANCE 176
WEST--VARIANCE -121

Note: In addition to illustrating cell notation, this example demonstrates the use of
column numbering. Notice that the display of the EAST and WEST VARIANCEs in
columns 1 and 3, respectively, are controlled by the numbers in parentheses in the
request: EVAR (1) and WVAR (3).

Creating Financial Reports

16-22 Information Builders

Using Subroutines in Calculations
You may provide your own calculation routines in RECAP rows to perform
special-purpose calculations, a useful feature when these calculations are mathematically
complex or require extensive look-up tables.

User-written routines are coded as subroutines in any language that supports a call
process, such as FORTRAN, COBOL, PL/1, and BAL. See the Using Functions manual
for information about creating your own subroutines.

Syntax How to Call User-Written Subroutines in RECAP Commands
RECAP calcname[(s,e,i)][/format] = subroutine (input1,...,inputn,'format2');

where:
calcname

Specifies the name of the calculation. You also may specify a start (s), end (e), and
increment (i) value for the column where you want the value displayed; if omitted
the value appears in all columns.

format

The format for the calculation is optional; the default is the format of the column. If
the calculation consists of only the subroutine, make sure that the format of the
subroutine output value (format2) agrees with the calculation’s format. If the
calculation format is larger than the column width, the value displays in that column
as asterisks.

subroutine

Is the eight-character name of the subroutine. It must be different from any row label
and cannot contain any of the following special characters: = -, / ().

input

Are the input arguments for the call to the subroutine; they may include numeric
constants, alphanumeric literals, row and column references (R notation, E notation,
or labels), or names of other RECAP calculations.

Make sure that the values being passed to the subroutine agree in number and type
with the arguments as coded in the subroutine.

format2

Is the format of the return value, which must be enclosed in single quotation marks.

 Using Subroutines in Calculations

Creating Reports 16-23

Example Calling a Subroutine in a RECAP Command
Suppose you have a subroutine named INVEST in your private collection of subroutines
(INVEST is not available in the supplied library) and it calculates the amount on the basis
of cash on hand, total assets, and the current date. In order to create a report that prints an
account of company assets and calculates how much money the company has available to
invest, you must create a report request that invokes the INVEST subroutine.

The current date is obtained from the &YMD system variable. The NOPRINT option
beside it prevents the date from appearing in the report; the date is solely used as input
for the next RECAP statement.

The request is:
TABLE FILE LEDGER
 HEADING CENTER
 "ASSETS AND MONEY AVAILABLE FOR INVESTMENT </2"
 SUM AMOUNT ACROSS HIGHEST YEAR
 IF YEAR EQ 1985 OR 1986
 FOR ACCOUNT
 1010 AS 'CASH' LABEL CASH OVER
 1020 AS 'ACCOUNTS RECEIVABLE' LABEL ACR OVER
 1030 AS 'INTEREST RECEIVABLE' LABEL ACI OVER
 1100 AS 'FUEL INVENTORY' LABEL FUEL OVER
 1200 AS 'MATERIALS AND SUPPLIES' LABEL MAT OVER
 BAR OVER
 RECAP TOTCAS = CASH+ACR+ACI+FUEL+MAT; AS 'TOTAL ASSETS' OVER
 BAR OVER
 RECAP THISDATE/A8 = &YMD; NOPRINT OVER
 RECAP INVAIL = INVEST(CASH,TOTCAS,THISDATE,'D12.2'); AS
 'AVAIL. FOR INVESTMENT' OVER
 BAR AS '='
 END

The output is:
PAGE 1

ASSETS AND MONEY AVAILABLE FOR INVESTMENT

 YEAR
 1986 1985
--
CASH 2,100 1,684
ACCOUNTS RECEIVABLE 875 619
INTEREST RECEIVABLE 4,026 3,360
FUEL INVENTORY 6,250 5,295
MATERIALS AND SUPPLIES 9,076 7,754
 ------ ------
TOTAL ASSETS 22,327 18,712
 ------ ------
AVAIL. FOR INVESTMENT 3,481 2,994
 ====== ======

Creating Financial Reports

16-24 Information Builders

Supplying Data Directly in the FML Request
In certain cases, you may need to include some additional constants (for example,
exchange rates, inflation rates, etc.) in your model. Not all data values for the model have
to be retrieved from the data source. Using FML, you can supply data directly in the
request.

Syntax How to Supply Data Directly in a Request
DATA value,[..., value],$
[AS 'text'] [LABEL label]

where:
value

Specifies the values that you are supplying. Values in a list must be separated by
commas. The list must end with a comma and a dollar sign (,$).

AS 'text'

Allows you to assign a different title to the data value. Enclose the text in single
quotation marks.

label

Assigns a name to the data for use in RECAP calculations. The label can be up to 66
characters and cannot have blanks or special characters. Each explicit label you
assign must be unique.

Example Supplying Data Directly in a Request
In this example, two values (.53 and 1.37) are provided for the exchange rates of marks
and pounds, respectively:
DEFINE FILE LEDGER
MARKS/I5C=AMOUNT;
POUNDS/I5C=3.2*AMOUNT;
END

TABLE FILE LEDGER
SUM MARKS AS 'GERMAN,DIVISION'
POUNDS AS 'ENGLISH,DIVISION'
FOR ACCOUNT
1010 AS 'CASH--LOCAL CURRENCY' LABEL CASH OVER
DATA .53 , 1.37 ,$ AS 'EXCHANGE RATE' LABEL EXCH OVER
RECAP US_DOLLARS/I5C= CASH * EXCH;
END

The values supplied are taken one column at a time for as many columns as the report
originally specified.
The output is:
 GERMAN ENGLISH
 DIVISION DIVISION
 -------- --------
CASH--LOCAL CURRENCY 8,784 28,106
EXCHANGE RATE .53 1.37
US_DOLLARS 4,655 38,505

 Inserting Rows of Free Text

Creating Reports 16-25

Inserting Rows of Free Text
You can insert text anywhere in your FML report by typing it on a line by itself and
enclosing it within double quotation marks. You can also add blank lines, designated as
text, to improve the appearance of the report.

In addition, you can include data developed in your FML report in a row of free text by
including the label for the data variable in the text row.

Example Inserting Free Text
In this example, three rows of free text are inserted, one blank and two text rows:
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
" --- CASH ACCOUNTS ---" OVER
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
" " OVER
" --- OTHER CURRENT ASSETS ---" OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY'
END

The output is:
 AMOUNT

--- CASH ACCOUNTS ---
CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

--- OTHER CURRENT ASSETS ---
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307

Notice that the blank row was created by enclosing a blank within double quotation
marks on a separate line of the report request.

Creating Financial Reports

16-26 Information Builders

Syntax How to Insert Data Variables In Text Rows
"text <label[(c)][>]"

where:
<

Is a required left caret to bracket the label.
label

Is the explicit or implicit row label.
c

Is an optional cell identifier that indicates the column number of the cell. This
identifier, however, is required whenever there is more than one column in the
report. If you use it, enclose it in parentheses.

>

Is an optional right bracket that can be used to make the positioning clearer.

For related information, see Chapter 9, Customizing Tabular Reports.

Example Inserting a Data Variable in a Text Row
The following text line retrieves the value contained in column 1 for the row labeled
TOTCASH:
"TOTAL CASH IN THE CURRENT YEAR IS <TOTCASH(1)"

 Adding Columns to an FML Report

Creating Reports 16-27

Adding Columns to an FML Report
The request controls the number of columns in any report. For instance, if a request
contains the display command SUM AMOUNT AND FORECAST, the report will
contain two columns: AMOUNT and FORECAST.

You can add columns in an FML request, just as you can in a TABLE request, using the
COMPUTE command to calculate a value or simply to allocate the space, column title,
and format for a column. For related information, see Chapter 6, Creating Temporary
Fields.

Example Adding Columns to an FML Report
This example performs the designated calculation on each tagged or RECAP row of the
report. The RECAP rows, however, may change the calculation.
SUM CUR_YR AND LAST_YR
COMPUTE DIFFERENCE/D8S=CUR_YR - LAST_YR ;
FOR ACCOUNT
.
.
.
END

To add one or more future time periods to a report:
SUM AMOUNT ACROSS YEAR AND COMPUTE 1999/D12.2S=;
WHERE YEAR GE '1992' AND YEAR LE '1998'
.
.
.

Creating Financial Reports

16-28 Information Builders

Creating Recursive Models
Models involving different time periods often require using the ending value of one time
period as the starting value for the next time period. The series of calculations describing
these situations has two characteristics:

• The labels on one or more RECAP rows are duplicates of other rows. That is, they
are used repeatedly to recompute some values.

• A calculation may refer to a label not yet described, but provided later in the model.
If, at the end of the model, a label that is needed is missing, an error message is
displayed.

Recursive models require that the columns are produced in sequential order, one by one.
In nonrecursive models, all of the columns can be produced simultaneously.
Schematically, these patterns are shown below.

Recursive Model

Columns

Rows

Non-Recursive Model

Rows

Columns

FML automatically switches to sequential order as soon as either of the two modeling
conditions requiring the switch is recognized (that is, either reuse of labels by different
rows, or forward reference to a label in a calculation).

 Creating Recursive Models

Creating Reports 16-29

Example Recursive Models
The following example illustrates recursive models. Note that one year’s ENDCASH
becomes the next year’s STARTING CASH.
DEFINE FILE REGION
CUR_YR=E_ACTUAL;
LAST_YR=.831*CUR_YR;
NEXT_YR=1.2297*CUR_YR;
END

TABLE FILE REGION
SUM LAST_YR CUR_YR NEXT_YR
FOR ACCOUNT
10$$ AS 'STARTING CASH' LABEL STCASH OVER
RECAP STCASH(2,*) = ENDCASH(*-1); OVER
" " OVER
3000 AS 'SALES' LABEL SLS OVER
3100 AS 'COST' LABEL COST OVER
BAR OVER
RECAP PROFIT/I5C = SLS - COST; OVER
" " OVER
RECAP ENDCASH/I5C = STCASH + PROFIT;
END

The output is:
PAGE 1

 LAST_YR CUR_YR NEXT_YR
 ------- ------ -------

STARTING CASH 7,903 9,024 10,374

SALES 4,985 6,000 7,378
COST 3,864 4,650 5,718
 ------- ------ -------
PROFIT 1,121 1,350 1,660

ENDCASH 9,024 10,374 12,034

Note: Under CMS, the above example generates a warning message.

Creating Financial Reports

16-30 Information Builders

Formatting an FML Report
You can improve the readability and presentation of your FML report by adding
underlines and page breaks.

• Underlining. Reports with columns of numbers frequently need to display
underlines before some RECAP calculations. You can specify an underline character
introduced by the word BAR, in place of the tag value.

• Page breaks. You can request a new page at any point in a report by placing the
word PAGE-BREAK in place of the tag value.

Beyond the formatting available in FML, you can style elements of your reports (free
text, labels, data, RECAP calculations, and underlines) using StyleSheet syntax. For
details, see the documentation on formatting reports with StyleSheets.

Syntax How to Add an Underline Character for Columns
The syntax is
BAR [AS 'character'] OVER

where:
character

Is either the hyphen character (-) or the equal character (=). Enclose the character in
single quotation marks. The default character is the hyphen (-).

Example Underling Columns
This example uses the default underscore character (-):
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 AS 'CASH ON HAND' OVER
1020 AS 'DEMAND DEPOSITS' OVER
1030 AS 'TIME DEPOSITS' OVER
BAR OVER
RECAP TOTCASH = R1 + R2 + R3;
END

The output is:
 AMOUNT

CASH ON HAND 8,784
DEMAND DEPOSITS 4,494
TIME DEPOSITS 7,961

TOTCASH 21,239

Notice that the BAR ... OVER phrases underline only the column containing the display
field.

Syntax How to Specify a Page Break in FML Reports
To specify a page break include the following syntax in the FML request in place of a tag
value:
PAGE-BREAK OVER

 Suppressing Tagged Rows

Creating Reports 16-31

Suppressing Tagged Rows
You may sometimes wish to retrieve a tagged row solely for use in a calculation, without
displaying the row in a report. To suppress the display of a tagged row, you can add the
word NOPRINT to the row declaration, as you would in a TABLE request.

You can also suppress the display of intermediate RECAP rows used as input to other
calculations by adding the word NOPRINT to the RECAP command after the semicolon.
You may also wish to suppress the display of a tagged row if no data is found for the
values. For details, see Suppressing Rows With No Data on page 16-32.

Example Suppressing the Display of Rows
This example uses the value of COST in its computation, but does not display COST as a
row in the report.
DEFINE FILE REGION
AMOUNT/I5C=E_ACTUAL;
END

TABLE FILE REGION
SUM AMOUNT FOR ACCOUNT
3000 AS 'SALES' LABEL SLS OVER
3100 AS 'COST' LABEL COST NOPRINT OVER
RECAP PROFIT/I5C = SLS - COST; OVER
" " OVER
RECAP ROS/F6.2=100*PROFIT/SLS;
AS 'RETURN ON SALES'
END

The output is:
 AMOUNT

SALES 6,000
PROFIT 1,350

RETURN ON SALES 22.50

Creating Financial Reports

16-32 Information Builders

Suppressing Rows With No Data
The text for a tagged row is displayed even if no data is found in the file for the tag
values, with a period (.) representing the missing data. You can override this convention
by adding the phrase WHEN EXISTS to the definition of a tagged row. This makes
displaying a row dependent upon the existence of data for the tag. This feature is
particularly useful, for example, when the same model is applied to different divisions in
a company.

Example Suppressing Rows With No Data
In this example, assume that the variable DIVISION contains Division 1, a real estate
syndicate, and Division 2, a bank. The following request describes their balance sheets in
one FML report. Rows that are irrelevant for each division will not be displayed.
TABLE FILE LEDGER
HEADING CENTER
"BALANCE SHEET FOR DIVISION <DIVISION"
" "
SUM AMOUNT
BY DIVISION NOPRINT AND PAGE-BREAK
FOR ACCOUNT
2000 AS 'LAND' WHEN EXISTS LABEL LD OVER
2100 AS 'CAR LOANS' WHEN EXISTS LABEL LOAN OVER
 .
 .
 .

Saving and Retrieving Intermediate Report Results
Many reports require results developed in prior reports. This can be accomplished only if
a place is provided for storing intermediate values. An example is the need to compute
net profit in an Income Statement prior to calculating equity in a Balance Sheet. FML can
save selected rows from one or more models by posting them to a work file. The posted
rows can then be picked up from the work file and reused.

The default work file is FOCPOST. This is a comma-delimited file from which you can
report directly if a FOCPOST Master File is available. In order to use the work file in a
request, you must assign a physical name to the FOCPOST ddname before running the
report that posts the data, and again before running the report that picks up the data.
You can assign the physical name to the file by issuing a FILEDEF command on NT,
UNIX, and CMS, or a TSO ALLOCATE or DYNAM ALLOCATE command on MVS,
before the request is run.

While you cannot prepare an FML report entirely from data that you supply directly in
your request, you can, if you wish, prepare a report entirely from data that is stored in a
comma-delimited work file.

 Saving and Retrieving Intermediate Report Results

Creating Reports 16-33

Posting Data
You can save any tagged, RECAP, or DATA row by posting the output to a file. These
rows can then be used as though they were provided in a DATA row.

The row will be processed in the usual manner in the report, depending on its other
options, and then posted. The label of the row is written first, followed by the numeric
values of the columns, each comma-separated, and ending with the terminator character
($). For an illustration, see Posting Rows to a Work File on page 16-33.

Syntax How to Post Data to a File
The syntax for saving any tag, RECAP, or data row is:
POST [TO ddname]

where:
ddname

Is the logical name you assign to the work file in which you are posting data.

You add this syntax to any row you wish to post to the work file.

Example Posting Rows to a Work File
The following request create an FML report, and posts two tag rows to the work file,
LEDGEOUT:
FILEDEF LEDGEOUT DISK [PATH]\LEDGEOUT.DAT

DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
END

TABLE FILE LEDGER
SUM CUR_YR LAST_YR
FOR ACCOUNT
1100 LABEL AR POST TO LEDGEOUT OVER
1200 LABEL INV POST TO LEDGEOUT
END

The output is:
AR , 18829, 15954,$
INV , 27307, 23329,$

Creating Financial Reports

16-34 Information Builders

Syntax How to Pick Up Data From a Work File
You can retrieve posted rows from any work file and use them as if they were provided in
a DATA row by adding the following phrase to an FML request:
DATA PICKUP [FROM ddname] id1 [OR id2....] [LABEL label] [AS 'text']

where:
ddname

Is the logical name of the work file from which you are retrieving data.
id

Is the label that was assigned in the work file to the posted row of data that is now
being picked up.

label

Is the label you wish to assign to the data you are picking up.

The label you assign to the picked data can, but is not required to, match the id of the
posted data.

You can include LABEL and AS phrases, but WHEN EXISTS is not supported.

Example Picking Up Data From a Work File
In the following example, the data in the LEDGER data source and in the LEDGEOUT
work file will be used in the RECAP calculation. (To see how this file was created, refer
to Posting Rows to a Work File on page 16-33.)

Tip:
You must assign a logical name to the file by issuing a FILEDEF command on NT, UNIX,
and CMS, or a TSO ALLOCATE or DYNAM ALLOCATE command on MVS, before the
request is run.

DEFINE FILE LEDGER
CUR_YR/I5C=AMOUNT;
LAST_YR/I5C=.87*CUR_YR - 142;
END

TABLE FILE LEDGER
SUM CUR_YR LAST_YR
FOR ACCOUNT
1010 TO 1030 AS 'CASH' LABEL CASH OVER
DATA PICKUP FROM LEDGEOUT AR
AS 'ACCOUNTS RECEIVABLE' LABEL AR OVER
DATA PICKUP FROM LEDGEOUT INV
AS 'INVENTORY' LABEL INV OVER
BAR OVER

RECAP CUR_ASSET/I5C = CASH + AR + INV;
END

 Creating HOLD Files From FML Reports

Creating Reports 16-35

The output is:
 CUR_YR LAST_YR
 ------ -------
CASH 21,239 17,195
ACCOUNTS RECEIVABLE 18,829 15,954
INVENTORY 27,307 23,329
 ------ -------
CUR_ASSET 67,375 56,478

The following line could be used to pick up the sum of the two accounts from
LEDGEOUT:
DATA PICKUP FROM LEDGEOUT AR OR INV
AS 'ACCTS REC AND INVENTORY'

Note: Since the rows in a PICKUP file are stored in standard comma-delimited format,
they could have been provided either from a prior posting, or directly by a user.

Creating HOLD Files From FML Reports
A report created with FML can be extracted to a HOLD file in the same way as all other
reports created with the TABLE language (see Chapter 11, Saving and Reusing Report
Output). In this case, you identify the set of tag values specified for each row by the
description field (the AS text supplied in the model). When no text is given for a row, the
first tag value is used automatically. Therefore, in simple models with only one tag per
row and no text, the lines in the HOLD file contain the single tag value. The rows derived
from the RECAP calculation form part of the HOLD file. Pure text rows (including BAR
rows) are omitted.

For HOLD to be supported with RECAP, the format of the RECAP field must be the
same as the format of the original column.

This feature enables you to create new rows in the HOLD file that are the result of
calculations. The augmented HOLD file may then be used in a variety of TABLE
requests.

Note: RECAP rows cannot be reformatted when creating HOLD files.

Creating Financial Reports

16-36 Information Builders

Example Creating a Hold File From an FML Report
The following request creates a HOLD file that contains records for CASH, ACCOUNTS
RECEIVABLE, INVENTORY, and the RECAP row CURRENT ASSETS:
TABLE FILE LEDGER
SUM AMOUNT FOR ACCOUNT
1010 TO 1030 AS 'CASH' OVER
1100 AS 'ACCOUNTS RECEIVABLE' OVER
1200 AS 'INVENTORY' OVER
RECAP CA = R1 + R2 + R3; AS 'CURRENT ASSETS'
ON TABLE HOLD
END

You can query the HOLD file:
>
? hold

DEFINITION OF HOLD FILE: HOLD

FIELDNAME ALIAS FORMAT

 EO1 A19
AMOUNT EO2 I5C

You can then report from the HOLD file as:
TABLE FILE HOLD
PRINT E01 E02
END

The output is:
 AMOUNT

CASH 21,239
ACCOUNTS RECEIVABLE 18,829
INVENTORY 27,307
CURRENT ASSETS 67,375

Creating Reports 17-1

CHAPTER 17

Creating a Free-Form Report

Topics:
• Introduction to Free-Form Reports

• Designing a Free-Form Report

You can present data in an unrestricted or free-form format
using a layout of your own design.

Whereas tabular and matrix reports present data in columns and
rows for the purpose of comparison across records, and graphic
reports present data visually using charts and graphs, free-form
reports reflect your chosen positioning of data on a page.
Free-form reporting meets your needs when your goal is to
present a customized picture of a data source record on each
page of a report.

Creating a Free-Form Report

17-2 Information Builders

Introduction to Free-Form Reports
You can design a free-form report by creating a TABLE request that omits the display
commands that control columnar and matrix formatting (PRINT, LIST, SUM, and
COUNT). Instead, the request includes the following report features:

Heading Contains the body of the report. It displays the text characters,
graphic characters, and data fields that make up the report.

Footing Contains the footing of the report. This is the text that appears
at the bottom of each page of the report. The footing may
display the same characters and data fields as the heading.

Prefix operators Indicate field calculations and manipulation.

Temporary fields Derive new values from existing fields in a data source.

BY phrases Specify the report’s sort order and determine how many
records are included on each page.

WHERE criteria Select records for the report.

This topic contains the following:

• Analysis of a sample free-form report and the request that generated it. See Creating
a Free-Form Report on page 17-2.

• Description of how to design a free-form report using text, data fields, and graphic
characters in the heading and footing. You will also learn how to manipulate and
calculate data fields for your report. See Designing a Free-Form Report on page
17-6.

• Discussion of report layout using spot markers. See Laying Out a Free-Form Report
on page 17-8.

• Discussion of sorting and record selection in a free-form report. See Sorting and
Selecting Records in a Free-Form Report on page 17-8.

Example Creating a Free-Form Report
Suppose that you are a Personnel Manager and it is your responsibility to administer your
company’s education policy. This education policy states that the number of hours of
outside education that an employee can take at the company’s expense is determined by
the number of hours of in-house education completed by the employee.

To do your job efficiently, you would like a report that shows the in-house education
history of each employee. Each employee’s information should display on a separate
page so that it can be placed in the employee’s personnel file and referenced when an
employee requests approval to take outside courses.

To meet this requirement, you create the EMPLOYEE EDUCATION HOURS REPORT,
which displays a separate page for each employee. Notice that pages 1 and 2 of the report
provide information about employees in the MIS department, while page 6 provides
information for an employee in the Production department.

 Introduction to Free-Form Reports

Creating Reports 17-3

The following diagram simulates the output you would see if you ran the procedure in
Request for EMPLOYEE EDUCATION HOURS REPORT on page 17-4.

PAGE 1

EMPLOYEE EDUCATION HOURS REPORT
FOR THE MIS DEPARTMENT

EMPLOYEE NAME: MARY SMITH
EMPLOYEE ADDRESS: ASSOCIATED

2 PENN PLAZA
NEW YORK NY 10001

JOB CODE: B14
JOB DESCRIPTION: FILE QUALITY

MOST RECENT COURSE TAKEN ON: 81/11/16
TOTAL NUMBER OF EDUCATION HOURS: 36.00

|-----------------------------|
EDUCATION CREDITS EARNED 6

PRIVATE AND CONFIDENTIAL

PAGE 2

EMPLOYEE EDUCATION HOURS REPORT
FOR THE MIS DEPARTMENT

EMPLOYEE NAME: DIANE JONES
EMPLOYEE ADDRESS:

235 MURRAY HIL PKWY

RUTHERFORD NJ 07073

PAGE 6

EMPLOYEE EDUCATION HOURS REPORT
FOR THE PRODUCTION DEPARTMENT

EMPLOYEE NAME: ALFRED STEVENS
EMPLOYEE ADDRESS: ASSOCIATED

2 PENN PLAZA

NEW YORK NY 10001

Creating a Free-Form Report

17-4 Information Builders

Example Request for EMPLOYEE EDUCATION HOURS REPORT
The following request produces the EMPLOYEE EDUCATION HOURS REPORT,
which you can see in Creating a Free-Form Report page 17-2. Numbers to the left of the
request correspond to numbers in the following annotations:
1. DEFINE FILE EMPLOYEE
 CR_EARNED/I2 = IF ED_HRS GE 50 THEN 9
 ELSE IF ED_HRS GE 30 THEN 6
 ELSE 3;
 END
2. TABLE FILE EMPLOYEE
3. HEADING
 "PAGE <TABPAGENO"
 " "
 "<13>EMPLOYEE EDUCATION HOURS REPORT"
4. "<14>FOR THE <DEPARTMENT DEPARTMENT"
5. "</2"
 "EMPLOYEE NAME: <FIRST_NAME> <LAST_NAME>"
 "EMPLOYEE ADDRESS: <ADDRESS_LN1>"
 "<23><ADDRESS_LN2>"
 "<23><ADDRESS_LN3>"
 "</1"
 "JOB CODE: <JOBCODE>"
 "JOB DESCRIPTION: <JOB_DESC>"
 "</1"
6. "MOST RECENT COURSE TAKEN ON: <MAX.DATE_ATTEND>"
 "TOTAL NUMBER OF EDUCATION HOURS: <ED_HRS>"
 "</1"
7. "<10>|-----------------------------|"
8. "<10>| EDUCATION CREDITS EARNED <CR_EARNED>|"
 "<10>|-----------------------------|"
9. FOOTING
 "<15>PRIVATE AND CONFIDENTIAL"
 BY DEPARTMENT
10. BY EMP_ID NOPRINT PAGE-BREAK
11. WHERE ED_HRS GT 0
 END

 Introduction to Free-Form Reports

Creating Reports 17-5

The list that follows explains the role of each line of the request in producing the sample
report:

1. The DEFINE command creates a virtual field for the report. The calculation reflects
the company’s policy for earning outside education credits. The result is stored in
CR_EARNED and appears later in the report.

2. A free-form report begins with a standard TABLE FILE command. The sample
report uses the EMPLOYEE data source for its data.

3. The heading section, initiated by the HEADING command, defines the body of the
report. Most of the text and data fields that appear in the report are specified in the
heading section. In this request, the heading section continues until the FOOTING
command is encountered.

4. This line illustrates how versatile you can be with a heading. It shows the following:

• The second line of the text in the report heading.

• A data field embedded in the text: <DEPARTMENT.

• The start position of the line, column 14: <14>.

5. You can enhance the readability of a report using line-skipping commands. The
command </2, when coded on a line by itself, generates three blank lines, as seen
between the report heading and employee name.

6. This line illustrates how to perform a field calculation in a free-form report using a
prefix operator. In this case, we requested the date on which the most recent course
was taken—that is, the maximum value for the DATE_ATTEND field.

7. The next three lines illustrate the use of special characters to create a graphic in the
report. The box around EDUCATION CREDITS EARNED may need adjustment for
output displayed in a proportional font.

8. The value of the field created by the DEFINE command displays in the box,
highlighting the number of education credits an employee has earned. This line
demonstrates that you can display a virtual field in the body of your report. As you
recall, we created this field at the start of the request.

9. The FOOTING command not only signifies the beginning of the footing section, but,
in our example, it also ends the heading section. Since we have designed a personnel
report, it is important to have the words PRIVATE AND CONFIDENTIAL appear at
the end of each page of the report. The footing can accomplish this requirement.

10. This line illustrates the use of sorting in a free-form report. The report specifications
require that information for only one employee appears per page; that requirement is
met through the BY and PAGE-BREAK commands.

11. You can specify record selection in a free-form report. As a result of the WHERE
criterion, the report includes only employees who have accumulated in-house
education credits.

Creating a Free-Form Report

17-6 Information Builders

Designing a Free-Form Report
To design the body of a report, use the HEADING and FOOTING commands. They
enable you to do the following:

• Incorporate text, data fields, and graphic characters in your report.

• Lay out your report by positioning text and data in exact column locations and
skipping lines for readability.

Use the HEADING command to define the body of a free-form report, and the
FOOTING command to define what appears at the bottom of each page of a report. A
footing in a report is optional. You can easily define an entire report using just a heading.

Incorporating Text in a Free-Form Report
You can specify text anywhere in a free-form report, for a variety of purposes. In the
sample request, text is used:

• As a report title:
"<13>EMPLOYEE EDUCATION HOURS REPORT"

• As a label for data fields:
"EMPLOYEE NAME: <FIRST_NAME> <LAST_NAME>"

• With a data field and graphic characters:
"<10>| EDUCATION CREDITS EARNED <CR_EARNED>|"

• As a page footing:
"<15>PRIVATE AND CONFIDENTIAL"

 Designing a Free-Form Report

Creating Reports 17-7

Incorporating Data Fields in a Free-Form Report
The crucial element in any report, free-form or otherwise, is the data. The data fields
available for use in a request include data fields in the Master File, cross-referenced
fields, and virtual fields created with the DEFINE command.

The sample request for the EMPLOYEE EDUCATION HOURS REPORT, which you
can see in Request for EMPLOYEE EDUCATION HOURS REPORT on page 17-4
references all three types of data fields:

• ED_HRS is found in the EMPLOYEE Master File:
"TOTAL NUMBER OF EDUCATION HOURS: <ED_HRS>"

• DATE_ATTEND is found in the EDUCFILE Master File, which is cross-referenced
in the EMPLOYEE Master File:
"MOST RECENT COURSE TAKEN ON: <MAX.DATE_ATTEND>"

• CR_EARNED is created with the DEFINE command before the TABLE FILE
command and is referenced as follows:
"<10>| EDUCATION CREDITS EARNED <CR_EARNED>|"

You cal also apply a prefix operator to a data field to select a particular value (for
example, the maximum value within a sort group) or to perform a calculation (for
example, to compute the average value of a field). You can use any available prefix
operator in a free-form report.

In the sample request, the MAX prefix operator selects the most recent completion date
of an in-house course:
"MOST RECENT COURSE TAKEN ON: <MAX.DATE_ATTEND>"

As is true with all types of reports, you must understand the structure of the data source to
use the prefix operators correctly.

Incorporating Graphic Characters in a Free-Form Report
The use of graphics in a report can be as creative as your imagination. The sample report
uses special characters to enclose text and a virtual field in a box. Some other ideas
include the following:

• Highlighting key data fields using asterisks or other special characters available
directly from your keyboard, or using the HEXBYT subroutine. See the Using
Functions manual for details on HEXBYT.

• Enclosing the entire report in a box to give it a form-like appearance.

• Using double lines to separate the body of the report from its heading and footing.

The use of special characters to create graphics is limited by what can be entered and
viewed from your workstation and what can be printed on your printer. If you have any
difficulty producing the graphics that you want, be sure to check with someone in your
organization who knows what is available.

Creating a Free-Form Report

17-8 Information Builders

Laying Out a Free-Form Report
To provide spacing in a report and position text and data fields as desired, use the spot
marker feature of the HEADING and FOOTING commands.

The sample request for the EMPLOYEE EDUCATION HOURS REPORT, which you
can see in Request for EMPLOYEE EDUCATION HOURS REPORT on page 17-4,
illustrates this feature. The first two examples show how to position text and data fields
on your report, while the third example shows how to skip lines:

• The spot marker <13> positions the specified text in column 13 of the report:
"<13>EMPLOYEE EDUCATION HOURS REPORT"

• The spot marker <23> positions the specified data field in column 23 of the report:
"<23><ADDRESS_LN2>"

• The spot marker </1 on a line by itself skips two lines after displaying the job
description:
"JOB DESCRIPTION: <JOB_DESC>"
"</1"
"MOST RECENT COURSE TAKEN ON: <MAX.DATE_ATTEND>"

When designing a free-form report, take advantage of sort field options, such as
NOPRINT, PAGE-BREAK, and UNDER-LINE. The sample request uses
PAGE-BREAK to place each employee’s information on a separate page:
BY EMP_ID NOPRINT PAGE-BREAK

Sorting and Selecting Records in a Free-Form Report
As with tabular and matrix reports, you can both sort a report and conditionally select
records for it. Just use the same commands you would use for tabular and matrix reports.
For example, use the BY phrase to sort a report and define WHERE criteria to select
records from the data source.

Creating Reports 18-1

CHAPTER 18

Creating Graphs: GRAPH

Topics:

• Introduction

• Command Syntax

• Graph Forms

• Adjusting Graph Elements

• Special Topics

• Special Graphics Devices

• Command and SET Parameter
Summary

Graphs often convey meanings more clearly than data listed in
tabular report format. The FOCUS GRAPH command acts in
the same way as the TABLE command to retrieve data from a
file, but it presents the information—either on the screen or to a
printer in one of five standard graphic formats:

• A connected point or line plot

• A histogram

• A bar chart

• A pie chart

• A scatter diagram

Creating Graphs: GRAPH

18-2 Information Builders

Introduction
This chapter explains how to generate each of these graph forms and adjust the features
on the graphs you produce.

The examples in this chapter are drawn on the SALES database that is included on your
system tape. All examples in this chapter assume that FOCUS default parameters, called
SET parameters, are in effect.

The SALES database is used to illustrate the examples used in this chapter. The Master
File and a schematic diagram of the file appear in Appendix A, Master Files and
Diagrams. An additional temporary field named SALES has been defined and used in
many of the examples:

DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH vs. TABLE Requests
GRAPH request syntax is similar to TABLE request syntax. In fact, the output from
many TABLE requests can be converted directly into a graph by typing the command
REPLOT at the FOCUS command prompt immediately after the output of the request has
been displayed. For example

TABLE FILE SALES
HEADING CENTER
"SAMPLE TABLE REPORT FOR REPLOTTING"
SUM SALES ACROSS CITY
END

produces the following output:

 Introduction

Creating Reports 18-3

To convert the output into a graph, exit the report and at the FOCUS command prompt
type

REPLOT

and press Enter.

To produce the graph directly, without creating a preliminary tabular report, substitute
the command GRAPH for TABLE in the original request, as shown in the following
example:

GRAPH FILE SALES
HEADING CENTER
"SAMPLE TABLE REPORT FOR REPLOTTING"
SUM SALES ACROSS CITY
END

Thus, you can produce graphs by simply converting TABLE requests, but every TABLE
facility does not have a GRAPH counterpart, and there are some practical limitations on
the amount of information that you can effectively display in a graph. Command Syntax
on page 18-12 describes the use of TABLE features in GRAPH requests.

Creating Graphs: GRAPH

18-4 Information Builders

The type of graph (graph form) produced by a GRAPH request depends on the verb used
(such as SUM or PRINT), the sort phrase used (ACROSS or BY), and the data type of
the sort field. Consider the five graphs that appear on the following pages, and the
requests that produce them.

SET HISTOGRAM=OFF

GRAPH FILE SALES
HEADING CENTER
"SAMPLE CONNECTED POINT PLOT"
SUM SALES ACROSS DATE
END

Figure 18-1. Sample Connected Point Plot

Note: SET parameters remain in effect until you reset them or log off (see SET
Parameters on page 18-60).

SET HISTOGRAM=ON

GRAPH FILE SALES
HEADING CENTER
"SAMPLE HISTOGRAM"
SUM SALES ACROSS PROD_CODE
END

Figure 18-2. Sample Histogram

 Introduction

Creating Reports 18-5

SET BARWIDTH=2, BARSPACE=2

GRAPH FILE SALES
HEADING CENTER
"SAMPLE BAR CHART"
SUM SALES BY CITY
END

Figure 18-3. Sample Bar Chart

Creating Graphs: GRAPH

18-6 Information Builders

DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

SET PIE=ON, GCOLOR=OFF
SET VAXIS=50, HAXIS=100

GRAPH FILE SALES
HEADING CENTER
"SAMPLE PIE CHART"
SUM SALES ACROSS CITY
END

SAMPLE PIE CHART
SALES

UNIONDALE

STAMFORD

NEWARK

NEW YORK

CITY

Figure 18-4. Sample Pie Chart

 Introduction

Creating Reports 18-7

SET HISTOGRAM=OFF

GRAPH FILE SALES
HEADING CENTER
"SAMPLE SCATTER DIAGRAM"
PRINT UNIT_SOLD ACROSS PROD_CODE
END

Figure 18-5. Sample Scatter Diagram

Controlling the Format
In each of the previous graphs, FOCUS created a clear representation of the data using its
default values for the graph features (such as axis lengths, axis scales, or titles). You can
issue your initial request immediately and concentrate on selecting the data, while
FOCUS controls all of the features on the graph.

Subsequently, when satisfied with the data portrayed in your graph, you can refine its
appearance by adjusting the parameters that control the look of the graph. You can set the
control parameters individually (for example, SET GRID=ON), or ask FOCUS to prompt
you for all of their values when you execute the SET GPROMPT=ON command.

Note: When entering several SET parameters on one line, separate them with commas.

The request below illustrates some of the parameters you can control:
SET HISTOGRAM=OFF
SET HAXIS=75, VAXIS=32, GRID=ON

GRAPH FILE SALES
HEADING
"</1 <20 ILLUSTRATION OF"
"<23 GRAPH FEATURES AND CONTROLS"
SUM SALES AND UNIT_SOLD ACROSS PROD_CODE
FOOTING CENTER
"</1 <MIN.RETAIL = CHEAPEST ITEM"
END

Creating Graphs: GRAPH

18-8 Information Builders

The graph generated OFFLINE in response to the request appears below.

Annotating text
placed here with
HEADING

Vertical axis
title (legend).

Tick Marks

} Tick Interval
(HTICK)

Grid line
(GRID)

} Class
interval

Plot
points for
display fields

Plot point
connectors

Vertical axis
(VAXIS or VAX)

Horizontal
axis

Horizontal axis title
(object of ACROSS)

Annotating text placed here
with FOOTING

Figure 18-6. Illustration of Graph Elements

Note:

• This graph is a connected point plot, with the plot points representing the sales
(retail_price * unit_sold) and total units sold for each of the product codes listed
across the horizontal axis.

• Annotating text has been added above and below the graph with the HEADING and
FOOTING facilities. Note the use of spot markers to position text on the graph and
the embedded calculation with a direct operator.

• Only the vertical axis is scaled because the ACROSS phrase objects were not
numeric values. The plus symbols (+) mark the class intervals on the axis scale and
vertical bars mark the tick intervals.

• Horizontal grid lines appear at the vertical class marks.

 Introduction

Creating Reports 18-9

For graphs generated ONLINE, FOCUS automatically detects the height and width of a
particular terminal and plots the graph accordingly. As a result, VAXIS and HAXIS
settings are ignored.

You control the graphic elements shown in Figure 18-6 in one of two ways: either by the
syntax in the actual request, or with SET commands. Command Syntax on page 18-12
describes the elements in GRAPH requests and their effects. Adjusting Graph Elements
on page 18-38 describes the adjustable parameters that control graph features.

There are also some additional SET parameters that control non-graphic elements:

• Specifying an output device.

• Pausing between data retrieval and printing to permit the user to adjust paper in the
printer or plotter.

• Using special black/white shading patterns to simulate different colors.

• Displaying the current settings of the GRAPH parameters on the screen.

After retrieving data from a file and displaying it either as a tabular report or a graph, you
can use the SET command to adjust the format and then redisplay the graph by issuing
the REPLOT command (without resorting to further data retrieval).

A summary of all of the SET parameters appears in SET Parameters on page 18-60.

Creating Graphs: GRAPH

18-10 Information Builders

Graphic Devices Supported
You may create graphs on any terminal or printer that can print FOCUS reports. If your
terminal has no graphics capabilities, FOCUS uses the characters in the standard
character set when producing graphs. As the default, FOCUS sends GRAPH output to the
terminal (or system printer, if PRINT=OFFLINE). This produces low-resolution
graphics. The examples in the chapter thus far (except the pie chart) illustrate the default.
You cannot create continuous line plots or pie charts unless you have a high-resolution
graphic device.

While FOCUS can accommodate devices with no inherent graphics capabilities, it can
also take advantage of whatever graphics facilities are available. Some personal
computers offer ranges of special characters that can be used to create more readable
graphs (see Figure 18-7), and if color monitors or multiple-pen plotters are available,
further improvements in graph quality are possible (see Figure 18-8 and Special
Graphics Devices on page 18-54).

Figure 18-7. Graph on an IBM PC Mono Screen

Figure 18-8. Sample Graph on Plotter

 Introduction

Creating Reports 18-11

On IBM mainframes, FOCUS supports the use of high-resolution terminals such as the
Model 3279 via the IBM Graphical Data Display Manager (GDDM), which is discussed
in IBM Devices Using GDDM on page 18-55. A variety of other high-resolution
terminals, printers, and plotters are also supported and they are listed in this section. To
select one, simply enter the appropriate form of the SET DEVICE command (see
High-Resolution Devices on page 18-55). Note, in reviewing the device selections, that
all have fixed graphic window dimensions (horizontal and vertical axes), which are fixed
until a new device is selected.

Please note that this list includes only fully tested devices, although other devices may
also work with FOCUS.

Medium-Resolution Devices
Anderson Jacobson Models:AJ830, and AJ832 (12 Pitch).

Diablo Models: 1620, and 1620 (12 Pitch).

Gencom Models: GENCOM, and GENCOM (12 Pitch).

Trendata Models: Trendata 4000A, and 4000A (12 Pitch).

High-Resolution Devices
IBM Graphic Devices (GDDM is required).

• Any IBM 3270 series device that supports GDDM graphics, such as 3279-S3G,
3179, or 3472. This includes PCs with fully compatible 3270 series hardware and
software.

Hewlett-Packard Plotters:

• Four-pen plotters without paper advance: Models 7220A, 7221, and 7470A (requires
Y cable #17455).

• Four-pen plotters with paper advance: Models 7220S and 7221S.

• Eight-pen plotters without paper advance: Models 7220C, 7221C, 7475A (requires
Y cable #17455).

• Eight-pen plotters with paper advance: Models 7220T, 7221T.

Tektronix Graphic Devices (only monochrome display).

• Models 4010, 4012, 4013, 4014, 4014E, 4015, 4015E, 4025, 4027, 4050 series,
4662, and 4100 series.

Creating Graphs: GRAPH

18-12 Information Builders

Command Syntax
Most TABLE requests can be converted into GRAPH requests by simply replacing the
TABLE command with the GRAPH command. The only limitations are those inherent in
the nature of the graphic format. When a TABLE request is converted in this manner, the
various phrases that make up the body of the request take on special meanings that
determine the format and layout of the graph.

This section outlines the phrases that can appear in TABLE requests and describes their
effects in the context of GRAPH requests. The section also describes any limitations that
apply to their use.

GRAPH vs. TABLE Syntax
The syntax of the GRAPH command parallels that of the TABLE command. The main
elements of GRAPH requests are the verb phrase (display command), one or more sort
phrases, selection phrases, and headings and footings. All of the other phrases that appear
in TABLE requests are ignored. This applies to all control conditions (ON…) and all IN
phrases. The basic GRAPH syntax is as follows:

GRAPH FILE filename
[HEADING]
[heading phrase]
verb phrase
sort phrase
[additional sort phrases]
[selection phrase(s)]
[FOOTING]
[footing phrase]
END

The GRAPH request elements generally follow the same rules as their TABLE
counterparts:

• The word FILE and the file name must immediately follow the GRAPH command,
unless they were previously specified in a SET command:

SET FILE=filename

The file named can be any file available to FOCUS, including joined or
cross-referenced structures.

• You can concatenate unlike data sources in a GRAPH request with the MORE
command. See Concatenating Unlike Data Sources on page 18-17.

 Command Syntax

Creating Reports 18-13

• The order of the phrases in the request does not affect the format of the graph. For
example, the selection phrase may follow or precede the verb phrase and sort
phrase(s). The order of the sort phrases does affect the format of the graph, however,
just as the order of the sort phrases in TABLE requests affects the appearance of the
reports (see Selecting Forms: BY and ACROSS Phrases on page 18-15).

• The word END must be typed on a line by itself to complete a GRAPH request.

• An incomplete GRAPH request can be terminated by typing the word QUIT on a
line by itself (instead of END).

• All dates are displayed in MDY format unless they are changed to alphanumeric
fields.

There are a few notable syntactical differences between TABLE and GRAPH.
Specifically, the following restrictions apply:

• GRAPH requests must contain at least one sort phrase (BY phrase or ACROSS
phrase) and a verb with at least one verb object in order to generate a meaningful
graph.

• Several BY phrases can be used in a request, in which case multiple graphs are
created (one for each BY object). A single ACROSS phrase is allowed in a GRAPH
request, and requests for certain graph forms can contain both ACROSS and BY
phrases.

• The number of ACROSS values cannot exceed 64.

• In GRAPH requests the verb object must always be a numeric field.

• In GRAPH requests the sortfield in ACROSS and BY phrases cannot be a date
format field.

• No more than five verb objects are permitted in a GRAPH request. (This limitation is
necessary because standard graph formats generally do not permit more variables to
be displayed without rendering the graph unreadable.)

• The RUN option is not available as an alternative to END.

The following sections describe in more detail the functions performed by each of the
phrases used in GRAPH requests.

Creating Graphs: GRAPH

18-14 Information Builders

Specifying Graph Forms and Contents
Each graph form is defined by a particular combination of verb and sort phrase. The
combinations, which were illustrated earlier in GRAPH vs. TABLE Requests on page
18-2, are summarized in the table below (A and B represent two field names).

Point plot: SUM A ACROSS B (B is numeric)
Histogram: SUM A ACROSS B (B is alpha) requires SET HISTOGRAM=ON
Bar chart: SUM A BY B
Pie chart: SET PIE=ON
 SUM A ACROSS B

Scatter diagram: PRINT A ACROSS B or PRINT A BY B

Figure 18-9. Graph Selection Phrases

Naming Subjects: Verb Phrases
Each GRAPH request must include a verb and at least one verb object (up to five are
allowed). Three verbs are permitted: COUNT, SUM, and PRINT. SUM is synonymous
with either WRITE or ADD. Each verb object must be a computational field (not
alphabetic). For example,

GRAPH FILE SALES
SUM SALES
.
.
.

If the verb SUM (or WRITE or ADD) is used, then a bar chart, histogram, line plot or pie
chart is produced, depending on the sort phrase and sort field format used. If PRINT is
used, the graph is a scatter diagram.

The verb objects, which are the subjects of the graph, may be real or defined fields, with
or without direct operation prefixes (AVE., MIN., MAX., etc.). They may also be
computed fields. (All of the COMPUTE facilities are available in GRAPH requests.)

When the request has a single verb object, the vertical title of the graph is either the field
name of the verb object as it appears in the Master File or a replacement name supplied
in an AS phrase.

When a request contains multiple verb objects, each represents one variable in the graph,
and a vertical legend is printed instead of the vertical title. The legend specifies the field
names (and/or AS phrase substitutions) and provides a key to which line represents each
variable.

In your requests, verb objects may be separated by spaces, or by AND or OVER. OVER
has special significance in histogram and bar chart requests, where it controls the
stacking of the bars. This is described in the sections on Histograms (see Histograms on
page 18-26), and Bar Charts (see Bar Charts on page 18-29).

Verb objects used only for calculations need not appear in your graphs. Use the
NOPRINT or SUP-PRINT facilities to suppress the display of such fields.

 Command Syntax

Creating Reports 18-15

Selecting Forms: BY and ACROSS Phrases
At least one sort phrase is required in every GRAPH request. This may be either a BY
phrase or an ACROSS phrase.

For example,

GRAPH FILE SALES
SUM SALES
ACROSS PROD_CODE
.
.
.

The ACROSS phrase, if there is one, determines the horizontal axis of the graph.

If there is no ACROSS phrase the last BY phrase determines the vertical axis. When
there are multiple BY phrases or when an ACROSS and BY phrase are included in the
same request, FOCUS generates multiple graphs; one for each combination of values for
the fields referenced in the request (see The Vertical Axis: System Defaults on page 18-43
for information regarding control of the vertical axis).

Note: The FOCUS ICU Interface saves data for IBM’s Interactive Chart Utility (ICU) in
tied data format. If both an ACROSS and BY phrase are present in a GRAPH request one
common axis is established. This enables FOCUS graphs to be displayed as tower charts.

The FOCUS ICU Interface is discussed in further detail in Using the FOCUS ICU
Interface on page 18-54. You can also consult the ICU Interface Users Manual for
additional information.

The sortfield name may be replaced with an AS phrase. This is useful if the sort phrase
specifies one of the axes (it has no effect on any additional sort phrases).

Note that the values of fields mentioned in the additional sort phrases are not displayed
automatically in the graph. If you wish to have them appear you must embed them in a
heading or a footing line (see Adding Annotating Text: HEADING and FOOTING Lines
on page 18-18).

Creating Graphs: GRAPH

18-16 Information Builders

Selecting the Contents: Selection Phrases
Selection phrases are used in GRAPH requests to select particular records of interest.
Two selection phrases are available: IF and WHERE. The examples in this chapter use
the IF selection phrase. For a definition of the WHERE clause and the differences
between IF and WHERE, see Chapter 5, Selecting Records for Your Report.

The syntax for an IF phrase or a WHERE clause in a GRAPH request is identical to that
used in a TABLE request. For example,

GRAPH FILE SALES
SUM SALES
ACROSS PROD_CODE
IF PROD_CODE NE D12

A partial list of the relation tests appears below. See Chapter 5, Selecting Records for
Your Report, for a complete list.

Relation Meaning

EQ Equal to

NE Not equal to

GE Greater than or equal to

GT Greater than

LE Less than or equal to

LT Less than

CONTAINS Contains

OMITS Omits

 Command Syntax

Creating Reports 18-17

Concatenating Unlike Data Sources
With the FOCUS command, MORE, you can graph data from unlike data sources in a
single request; all data, regardless of source, appears to come from a single file. You
must divide your request into:

• One main request that retrieves the first file and defines the data fields, sorting
criteria, and output format for all data.

• Subrequests that define the files and fields to be concatenated to the data of the main
request. The fields printed and sorted by the main request must exist in each
concatenated file. If they do not, you must create them as DEFINE fields.

During retrieval, FOCUS gathers data from each database in turn. It then sorts all data
and formats the output as described in the main request. The syntax is

GRAPH FILE file1
 main request
MORE
FILE file2
 subrequest
 MORE
 .
 .
 .
END

where:

file1

Is the name of the first file.

main request

Is a request, without END, that describes the sorting, formatting, aggregation, and
COMPUTE field definitions for all data. IF and WHERE phrases in the main request
apply only to file1.

MORE

Begins a subrequest. The number of subrequests is limited only by available
memory.

FILE file2

Defines file2 as the second file for concatenation.

subrequest

Is a subrequest. Subrequests can only include WHERE and IF phrases.

END

Ends the request.

See Chapter 14, Merging Data Sources, for complete information and for concatenation
examples.

Creating Graphs: GRAPH

18-18 Information Builders

Adding Annotating Text: HEADING and FOOTING Lines
To insert annotating text above or below a graph, enter the keywords HEADING and/or
FOOTING, followed by the desired contents, including any necessary control elements
for skipping lines, etc. The syntax is the same as that used for headings and footings in
TABLE requests.

For example,

GRAPH FILE SALES
HEADING
"<7 THIS GRAPH SHOWS SALES BY PRODUCT CODE"
SUM SALES
BY PROD_CODE
IF PROD_CODE NE D12
FOOTING
"<7 FOR ALL PRODUCT CODES EXCEPT D12"
END

Note: When annotating text falls in the path of a plot point on a graph, the plot point is
printed; however, connecting points are suppressed if they lie in the path of annotating
text. (This enables you to adjust the position of the annotating text when you see the
contents of the graph.) The first line of any heading appears above the first line of the
legend.

 Command Syntax

Creating Reports 18-19

Inserting Formatting Controls
The formatting controls used in TABLE requests can also be used in GRAPH requests
for positioning text or field references in heading or footing lines, or even in the body of
your graph. The following example shows the use of spot markers, which are described
in
Chapter 9, Customizing Tabular Reports.

SET HISTOGRAM=OFF
GRAPH FILE SALES
HEADING
"</4 <22 GRAPH SHOWING HOW TO EMBED"
"<22 ANNOTATING TEXT"
"</10 <15 ANYWHERE ON THE GRAPH"
SUM UNIT_SOLD AND OPENING_AMT AS 'INVENTORY'
ACROSS DATE AS ' PERIOD COVERED'
FOOTING CENTER
"AVERAGE STOCK ON HAND WAS <AVE.OPENING_AMT"
END

Creating Graphs: GRAPH

18-20 Information Builders

Inserting Field References
The following example shows how to embed field values in graph heading or footing
lines. This capability is analogous to that in TABLE requests, and is useful when
annotating graphs created by requests containing multiple sort fields (where only the first
named sort field will appear as a title on the graph).

SET HISTOGRAM=OFF
DEFINE FILE SALES
SALES/D8.2=RETAIL_PRICE * UNIT_SOLD;
END

GRAPH FILE SALES
HEADING CENTER
"GRAPH WITH DEFINED AND COMPUTED FIELDS"
SUM SALES AND UNIT_SOLD AND OPENING_AMT
AS 'INVENTORY' AND
COMPUTE OVERHEAD/D8.2=.20 * SALES;
ACROSS DATE AS ' PERIOD COVERED'
BY PROD_CODE
IF 'PROD_CODE' IS 'C7' OR 'B10' OR 'B12'
FOOTING CENTER
"REPORT FOR PRODUCT <PROD_CODE"
END

 Graph Forms

Creating Reports 18-21

Graph Forms
This section describes the five graph forms produced by FOCUS, and their basic
elements. Connected point plots are described first, followed by histograms, bar charts,
pie charts, and scatter diagrams. The adjustable graphic features are mentioned only
briefly with the graph forms and fully described in Adjusting Graph Elements on page
18-38.

As you may have noticed when viewing the examples in GRAPH vs. TABLE Requests on
page 18-2, there are similarities between the requests used to create some of the forms.
For example, a request for a connected point plot (with an alphanumeric ACROSS field)
will create a histogram instead if the HISTOGRAM parameter is set on (the default). This
feature enables you retrieve data once, and then flip back and forth from one form to the
other by changing the HISTOGRAM value and issuing REPLOT.

Histograms are often called vertical bar charts, but the physical similarities between these
forms mislead users. Although the graphs look similar and have parameters that perform
similar functions (HSTACK and BSTACK), the parameters used to control the widths
and spacing of bars on bar charts have no effect on histogram bars.

Histograms and vertical scatter plots (those created with BY phrases) have
variable-length vertical axes that are not subject to the VAXIS parameter setting (VAXIS
is ignored).

Pie charts and bar charts are different geometrical representations of similar types of
data, but pie charts are only possible if you have a high-resolution device capable of
drawing respectable curves.

Creating Graphs: GRAPH

18-22 Information Builders

Connected Point Plots
You create a connected point plot (or a line plot on a high-resolution device), with a
request that combines the verb SUM (or the synonyms WRITE or ADD) with an
ACROSS phrase that specifies an alphanumeric or a numeric field. If the field specified
in the ACROSS phrase is alphanumeric, the HISTOGRAM parameter must be set off in
order to generate a connected point plot.

The values for the field named in the ACROSS phrase are plotted on the horizontal axis
and the values for the verb object(s) are plotted along the vertical axis.

The example below illustrates a point plot request.

SET HISTOGRAM=OFF

SET VAXIS=40,HAXIS=75
GRAPH FILE SALES
HEADING CENTER
"SAMPLE CONNECTED POINT PLOT"
SUM SALES ACROSS DATE
END

Note: The SET statements in the previous example were added to limit the size of the
output graph to a convenient size for display on the page. Without them, FOCUS sets the
default horizontal axis width at the capacity of the device selected, and a vertical height
of 66 lines (normal page length).

 Graph Forms

Creating Reports 18-23

Point Plot Features
Scale Titles — The values associated with the class markers are printed below the
horizontal axis in the USAGE format of the variable being plotted (MM/DD in our
example).

Plot Characters — The graphics characters used to plot the variables on connected point
plots vary depending on the type of display device being used:

• On high-speed printers and non-graphics terminals the data points are represented by
asterisks (*) when only one variable is plotted. If several variables are plotted, the
initial letters of the variable names are used (if you have duplicates, rename them
with AS phrases). The data points are connected by periods(.). You cannot create
continuous line plots on these devices; they are only available on high-resolution
devices.

• On high-resolution displays, printers, and plotters the lines connecting plot points are
drawn explicitly and when there are several variables they are distinguished either by
color or by the type of connecting line used (dotted, solid, or broken).

Axis Titles — You can include vertical and horizontal axis titles for your graphs:

• For requests with a single verb object the vertical title is either its field name or a
replacement name you have provided in an AS phrase.

• When more than one variable is plotted, FOCUS prints a vertical legend instead of
the vertical title. The legend specifies the field names or their replacements, and
provides a key showing which line represents each variable. Titles are displayed
staggered or folded on successive horizontal lines to permit more titles than a single
horizontal line can contain.

Creating Graphs: GRAPH

18-24 Information Builders

The example that follows illustrates a point plot with several variables.

SET HISTOGRAM=OFF

GRAPH FILE SALES
HEADING
"POINT PLOT WITH SEVERAL VARIABLES"
SUM SALES AND UNIT_SOLD AND INV AS 'ON HAND'
ACROSS DATE
END

Up to five variables can be plotted on the same vertical axis. When this is done, the scale
on the vertical axis is determined based on the combined values of the vertical variables,
and a separate point appears for each value of each variable.

 Graph Forms

Creating Reports 18-25

When planning graphs with multiple variables or large numbers, adjust your variables so
they are in the same order of magnitude. By redefining the variable plotted on the
horizontal axis by a suitable power of 10 you can improve the readability of the finished
graph. A method for doing this is shown in the example below.

DEFINE FILE SALES
SALES/D8.2=(UNIT_SOLD * RETAIL_PRICE)/10;
END

SET HISTOGRAM=OFF

GRAPH FILE SALES
HEADING CENTER
"STAMFORD'S SALES/10 AND RETURNS"
SUM SALES AND RETURNS ACROSS PROD_CODE
BY STORE
IF CITY IS 'STAMFORD'
FOOTING CENTER
"SALES FOR STORE # <STORE_CODE"
END

Creating Graphs: GRAPH

18-26 Information Builders

Histograms
Histograms are vertical bar charts and are useful for portraying the component parts of
aggregate values. They are essentially an alternate graphic format for plotting requests
that could also generate connected point plots. To flip back and forth from one format to
the other, simply reset the parameter HIST and issue REPLOT.

You create histograms by typing requests containing the verb SUM (or the synonyms,
WRITE or ADD) and an ACROSS phrase that specifies an alphanumeric field. One bar
appears on the graph for each verb object. The example that follows illustrates a
histogram with a single variable.

GRAPH FILE SALES
HEADING CENTER
"SAMPLE HISTOGRAM"
SUM SALES ACROSS PROD_CODE
END

 Graph Forms

Creating Reports 18-27

To draw the bars side by side, separate the verb objects with spaces or AND. To draw
superimposed (stacked) bars, separate the verb objects with OVER. The example that
follows illustrates a request using OVER:

GRAPH FILE SALES
HEADING
"SALES OVER INVENTORY AND RETURNS"
"ACROSS PRODUCT CODE"
SUM SALES OVER INV OVER RETURNS ACROSS PROD_CODE
END

Note that the legend uses the full field names rather than the aliases for the verb objects
(OPENING_AMT for INV).

When you name three or more verb objects in a request, you can have any combination
of stacked and side-by-side bars.

Creating Graphs: GRAPH

18-28 Information Builders

Histogram Features
Each vertical bar or group of bars represents a value of the ACROSS sort field. The range
of values for the verb objects determines the scale for the vertical axis.

All of the vertical axis features on histograms are adjustable:

• To reset the height of OFFLINE graphs, use the VAXIS parameter as described in
How to Set the Height on page 18-43. (For online graphs, FOCUS automatically sets
the height of your graph based on the terminal dimensions.)

• You can reset the upper and lower thresholds on the axis by setting the default
scaling mechanism off (VAUTO) and setting new upper and lower limits (VMAX
and VMIN). See How to Set the Scale: Assigning Fixed Limits on page 18-41.

• You can reset the class and tick intervals by overriding the default mechanism
(AUTOTICK) and setting new intervals (VCLASS and VTICK). See How to Set
Class and Tick Intervals on page 18-42.

FOCUS automatically sets the width of the bars and the spacing between them to fit
within the HAXIS parameter limit. These can be changed by resetting the HAXIS
parameter (see How to Set the Width on page 18-40).

The values for the data points on the HAXIS are printed horizontally on a single line or
staggered (folded) on two or more lines, depending on the available space.

To add a grid of parallel horizontal lines at the vertical class marks, issue the following
SET command before issuing your request:

SET GRID=ON

(Vertical grids are not available on histograms.)

To specify stacking of all bars without using OVER in the request, you can set the
parameter HSTACK (SET HSTACK=ON). (Remember to set it off again before moving
to other requests.)

Note: There is often confusion over histogram features because of the similarity with bar
charts. The BARNUMB facility used to print summary numbers for the bars in bar charts
does not work with histograms.

 Graph Forms

Creating Reports 18-29

Bar Charts
Bar charts have horizontal bars arrayed vertically. To produce a bar chart, type a request
containing the verb SUM and a BY phrase (but no ACROSS phrase). A separate group of
bars is created for each value of the BY field, and each group contains one bar for each
verb object in the request.

SET BARWIDTH=2, BARSPACE=1

GRAPH FILE SALES
HEADING
"BAR CHART"
SUM UNIT_SOLD BY CITY
IF PROD_CODE EQ B10
END

In the request above, the parameters BARSPACE and BARWIDTH were set to enhance
the appearance of the graph and improve readability.

Creating Graphs: GRAPH

18-30 Information Builders

In requests with multiple verb objects, each bar appears beneath its predecessor by
default. If verb objects are connected by OVER phrases, however, then the
corresponding bars are stacked and appear end-to-end. The following example illustrates
stacked bars.

SET BARSPACE=2, BARWIDTH=2

GRAPH FILE SALES
HEADING
"BAR CHART"
SUM DELIVER_AMT OVER INV BY CITY
WHERE 'PROD_CODE' EQ 'B10'
END

Alternatively, to request stacking of all bars, set the parameter BSTACK (SET
BSTACK=ON). If you use BSTACK you do not need OVER; any graph can be replotted
with and without stacking by simply changing the value of this parameter and issuing
REPLOT.

 Graph Forms

Creating Reports 18-31

Bar Chart Features
As we mentioned previously, you can set the BARWIDTH parameter to change the
widths of the bars themselves and set the BARSPACE parameter to change the spacing
between them. Set the GRID parameter to add a grid of vertical parallel lines at the class
marks on the horizontal axis. The examples that follow illustrate the use of these
parameters.

SET BARWIDTH=3, BARSPACE=2, BSTACK=OFF

GRAPH FILE SALES
HEADING
"BAR CHART"
SUM AVE.SALES AND UNIT_SOLD BY CITY
WHERE 'PROD_CODE' IS 'B10' OR 'B20'
FOOTING
"</2 CHANGING SPACING AND WIDTHS OF BARS"
END

The result appears below.

Creating Graphs: GRAPH

18-32 Information Builders

To print a summary value at the end of each bar, set the BARNUMB parameter.

Note: This feature is also available on pie charts, but is not available on histograms.

The effects of BARNUMB and GRID are shown below.

SET BARNUMB=ON, GRID=ON
GRAPH FILE SALES
HEADING CENTER
"CHART WITH SUMMARY NUMBERS AND A GRID"
SUM AVE.SALES AND INV AND UNIT_SOLD BY CITY
WHERE 'PROD_CODE' EQ 'B10' OR 'B20'
END

The horizontal axis features are all adjustable:

• To change the width of OFFLINE graphs, alter the HAXIS parameter as described in
How to Set the Width on page 18-40. (For ONLINE graphs, FOCUS will
automatically detect the width of the terminal and display the graph accordingly.)

• To reset the numerical scale, turn off the default scaling mechanism (HAUTO) and
set new upper and lower limits (HMAX and HMIN). See How to Set the Scale:
Assigning Fixed Limits on page 18-43.

• To change the class and tick intervals, override the default mechanism
(AUTOTICK) and set new intervals (HCLASS and HTICK). See How to Set Class
and Tick Intervals on page 18-42.

The vertical axis length is controlled by FOCUS. You can set the bar widths and spacing
as mentioned previously, but you cannot set the vertical height to a fixed dimension.

 Graph Forms

Creating Reports 18-33

Pie Charts
Pie charts can only be drawn on high-resolution graphic devices. (It is possible, however,
to create a formatted pie chart and save it for subsequent plotting on another device. See
Saving Formatted GRAPH Output on page 18-51.)

To create a pie chart, first set the PIE parameter ON and select a device (SET
DEVICE=), then type a request with the verb SUM (or the synonyms, WRITE or ADD)
and an ACROSS phrase that names an alphanumeric field. When you finish your pie
charts, set the PIE parameter OFF before running other types of GRAPH requests.

SET PIE=ON, DEVICE=HP7220C

GRAPH FILE SALES
HEADING CENTER
"PIE CHART PRODUCED ON HEWLETT-PACKARD MODEL 7475"
WRITE RPCT.UNIT_SOLD ACROSS CITY
END

PIE CHART produced on Hewlett-Packard Model 7475
UNITS_SOLD

UNIONDALE

STAMFORD

NEWARK

NEW YORK

CITY

Creating Graphs: GRAPH

18-34 Information Builders

Pie Chart Features
To add summary numbers for each slice of the pie chart on the previous page, simply
enter the following commands:

SET BARNUMB=ON
REPLOT

The effect is shown below:

PIE CHART produced on Hewlett-Packard Model 7475
UNITS_SOLD

UNIONDALE (32)

STAMFORD (47)

NEWARK (21)

NEW YORK (23)

CITY

Note: FOCUS does not include a facility for displaying exploded pie chart slices.

 Graph Forms

Creating Reports 18-35

Scatter Diagrams
Scatter diagrams illustrate occurrence patterns and distribution of variables. You create
them by issuing requests containing the verb PRINT and a sort phrase (BY or ACROSS).
The choice of BY or ACROSS dictates the vertical or horizontal bias of the graph. The
samples that follow illustrate both types.

GRAPH FILE SALES
HEADING CENTER
"SCATTER DIAGRAM USING ACROSS"
PRINT UNIT_SOLD ACROSS RETAIL_PRICE
END

The point plots on the vertical axis represent the values for the ACROSS field named.
Each record selected contributes a separate point. The sort control fields are plotted on
the horizontal axis, which is also scaled if the control field values are numeric.

Creating Graphs: GRAPH

18-36 Information Builders

When the request contains a BY phrase, the named sort control field is plotted down the
vertical axis and the data values are scaled horizontally.

GRAPH FILE SALES
HEADING CENTER
"SCATTER DIAGRAM USING BY"
PRINT UNIT_SOLD BY RETAIL_PRICE
END

The vertical axis is not scaled even if the control field is numeric. Each separate value of
the control field is plotted on a different line, but these are not arranged according to a
numerical scale. The full range of horizontal scaling options is available (see The
Horizontal Axis: System Defaults on page 18-40).

 Graph Forms

Creating Reports 18-37

Scatter Diagram Features
When multiple points fall in the same position, FOCUS displays either a number (for up
to nine occurrences) or an asterisk (for more than nine occurrences).

When you specify more than one verb object (five are permitted), they are represented by
the first letter of the field name. If they are not different you can assign unique symbols
with AS phrases.

Scatter diagrams can display the following:

• Trend lines (available only in plots generated using ACROSS). Trend lines are
calculated by Ordinary Least Squares (OLS) regression analysis and represent the
line of best fit. You can add them to requests containing ACROSS phrases by setting
the parameter GTREND before executing or replotting the request:

SET GTREND=ON

When two fields are plotted with GTREND=ON, FOCUS provides two trend lines.
If more than two fields are plotted, however, FOCUS does not provide trend lines.

• Horizontal grids. You can add horizontal grid lines at the vertical class marks by
setting the parameter GRID:

SET GRID=ON

• Vertical grids (available only in plots generated by requests using BY). You can add
vertical parallel lines at the horizontal class marks of the scatter plot by setting the
parameter VGRID:

SET VGRID=ON

Creating Graphs: GRAPH

18-38 Information Builders

Adjusting Graph Elements
All graphs other than pie charts have horizontal and vertical axes. These axes usually
have scales with adjustable upper and lower thresholds that are divided into class
intervals representing quantities of data (scales are only provided when the variables
named are computational fields). Class intervals are further broken down with tick marks
representing smaller increments of data.

When multiple graphs are created in a single request, FOCUS determines the default
horizontal scale after examining all values to be plotted, and the same scale is then
applied to each graph. Vertical scales are recalculated each time, however, and adjusted
for the values in each graph (unless you override this feature).

Some graph forms, notably connected point plots, histograms, and bar charts, can be
visually strengthened by the addition of parallel lines across the horizontal and/or vertical
axes, to form a grid against which the data is arrayed.

The material that follows describes the default conditions for all of these graph features,
and the facilities for changing the default values to create customized output.

At any time during your session you can review the current GRAPH parameter settings
by typing

? SET GRAPH

which displays the current settings of all of the adjustable GRAPH parameters, as shown
below.

Parameter Setting

DEVICE IBM3270

GPROMPT OFF

GRID OFF

VGRID OFF

HAXIS 130

VAXIS 66

GTREND OFF

GRIBBON (GCOLOR) OFF

VZERO OFF

VAUTO ON

VMAX .00

 Adjusting Graph Elements

Creating Reports 18-39

Parameter Setting

VMIN .00

HAUTO ON

HMAX .00

HMIN .00

AUTOTICK ON

HTICK .00

HCLASS .00

VTICK .00

VCLASS .00

BARWIDTH 1

BARSPACE 0

BARNUMB OFF

HISTOGRAM ON

HSTACK OFF

BSTACK OFF

PIE OFF

GMISSING OFF

GMISSVAL .00

Figure 18-10. GRAPH Parameter Settings

For information about each of the parameters listed, refer to SET Parameters on page
18-60.

Creating Graphs: GRAPH

18-40 Information Builders

The Horizontal Axis: System Defaults
The width of each graph, including any surrounding text, is controlled by the HAXIS
parameter. For online displays, FOCUS automatically detects the terminal width and
plots the graph accordingly.

For graphs generated OFFLINE, the default value for HAXIS is normally set to the
maximum possible size for the output device selected, after allowing for the inclusion of
any text required for the vertical axis and its labels along the left margin. To maximize
display space, you can limit the size of your labels through the use of either AS phrases
or DECODE expressions.

In setting the scale (when AUTOTICK=ON, and HAUTO=ON), FOCUS determines the
amount of available space and the range of values selected for plotting. It then selects
minimum, intermediate, and maximum unit values for the horizontal axis scale that
encompass the range of values and are convenient multiples of an appropriate power of
10 (10 vs. 1000 vs. 1,000,000).

When you select a high-resolution graphic device, FOCUS controls the axis dimensions
according to the values shown for the various devices in SET Parameters on page 18-60.

Syntax How to Set the Width
To set the width of the graph to a given number of characters, issue the SET statement

SET HAXIS=nn

where nn is a numeric value between 20 and 130.

 Adjusting Graph Elements

Creating Reports 18-41

Syntax How to Set the Scale: Assigning Fixed Limits
FOCUS automatically sets the horizontal scale to cover the total range of values to be
plotted (HAUTO=ON). The range is divided into intervals called classes. The scale is
normalized to provide class values rounded to the appropriate multiples and powers of 10
for the intervals plotted on the axis.

If you wish to assign fixed upper and lower limits (useful when producing a series of
graphs where consistent scales are needed), you do so by turning off the automatic
scaling mechanism and setting new limit values. This is done with the SET command.
The syntax is as follows

SET HAUTO=OFF, HMAX=nn, HMIN=nn

where:

HAUTO

Is the automatic scaling facility.

HMAX

Is the parameter for setting the upper limit on the horizontal axis. The default is 0.

HMIN

Is the parameter that controls the lower limit on the horizontal axis when HAUTO is
OFF. The default is 0.

nn

Is the new limit.

Note:

• When entering several SET parameters on one line, separate them with commas.

• If you define limits that do not incorporate all of the data values, FOCUS displays
OVER and/or UNDER to indicate that some of the data extracted is not reflected on
the graph.

Creating Graphs: GRAPH

18-42 Information Builders

Syntax How to Set Class and Tick Intervals
Class intervals are the intervals between the labels and grid lines on a graph. Tick
intervals are the subdivisions of class intervals. When AUTOTICK is ON, FOCUS
automatically determines the class and tick intervals.

To set the class and tick intervals yourself, first turn off the default scaling mechanism;
then reset the class and tick intervals with the SET command

SET AUTOTICK=OFF, HCLASS=nn, HTICK=nn

where:

AUTOTICK

Is the automatic scaling mechanism.

HCLASS

Is the parameter that controls the class interval on the horizontal axis when
AUTOTICK is OFF. The default is 0.

nn

Is the new class interval value for the axis.

HTICK

Is the parameter that controls the tick interval when AUTOTICK is OFF. The default
is 0.

nn

Is the new tick interval for the axis.

Note:

• When issuing more than one parameter with a sample SET command, separate
parameters with commas as shown above.

• To make the changes apparent on the screen, SET SCREEN to PAPER.

• The number of ticks per class is HCLASS/HTICK.

 Adjusting Graph Elements

Creating Reports 18-43

The Vertical Axis: System Defaults
The vertical axis (VAXIS) represents the number of lines in the graph, including any
surrounding text.

For online displays, FOCUS automatically plots the graph according to the terminal
height. For graphs generated offline, FOCUS respects VAXIS settings.

FOCUS automatically sets the vertical scale to cover the total range of values to be
plotted (VAUTO=ON). The height is set as high as possible (taking into consideration
the presence of any headings and/or footings, and the need to provide suitably rounded
vertical class markers).

The range is divided into intervals called classes. The scale is normalized to provide class
values rounded to the appropriate multiples and powers of 10 for the intervals plotted on
the axis.

As with the horizontal axis, FOCUS selects the vertical axis size whenever you select a
high-resolution graphic device (see SET Parameters on page 18-60).

Syntax How to Set the Height
Use the following SET command to set the vertical axis

SET VAXIS=nn

where nn is a number in the range 20-66.

Syntax How to Set the Scale: Assigning Fixed Limits
If you wish to give the vertical scale fixed upper and lower limits (useful when producing
a series of graphs where consistent scales are needed), you can do so by turning off the
automatic scaling mechanism and setting fixed limits. This is done with the SET
command

SET VAUTO=OFF, VMAX=nn, VMIN=nn

where:

VAUTO

Is the automatic scaling facility.

VMAX

Is the parameter for setting the upper limit on the vertical axis. The default is 0.

VMIN

Is the parameter that controls the lower limit on the vertical axis when VAUTO is
OFF. The default is 0.

nn

Is the new limit.

Creating Graphs: GRAPH

18-44 Information Builders

Note:

• When entering several SET parameters on one line, separate them with commas.

• If you define limits that do not incorporate all of the data values, FOCUS displays
OVER and/or UNDER to indicate that some of the data extracted is not reflected on
the graph.

Syntax How to Set Class and Tick Intervals
To set the class and tick intervals on the vertical axis, first turn off the default scaling
mechanism, and then reset the class and tick intervals with the SET command

SET AUTOTICK=OFF, VCLASS=nn, VTICK=nn

where:

AUTOTICK

Is the automatic scaling mechanism.

VCLASS

Is the parameter that controls the class interval on the vertical axis when
AUTOTICK is OFF. The default is 0.

nn

Is the new class interval for the vertical axis.

VTICK

Is the parameter that controls the tick interval when AUTOTICK is OFF. The default
is 0.

nn

Is the new tick interval for the axis.

Note:

• When setting more than one parameter, separate them with commas.

• To make the changes apparent on screen, SET SCREEN to PAPER.

• The number of ticks per class is VCLASS/VTICK.

 Adjusting Graph Elements

Creating Reports 18-45

Highlighting Facilities
FOCUS contains several facilities for highlighting the information shown on your
graphs. Specifically, these include the following:

• Grid lines can be added on one or both axes of connected point plots and scatter
diagrams or the horizontal axis of histograms.

• Trend lines are usually included on most scatter plots.

• Summary numbers can be printed for each slice of a pie chart or bar on a bar chart.

Syntax How to Add Horizontal or Vertical Grids
Grids often make graphs easier to read. They are parallel lines drawn across the graph at
the vertical and/or horizontal class marks on the axes.

Horizontal grid lines are available on connected point plots, histograms, and scatter
diagrams. To add them at the vertical class marks on your graph, issue the following
command:

SET GRID=ON

Vertical grid lines are available only on high-resolution devices in requests for connected
point plots and scatter diagrams, and only when the values on both axes are numeric. To
add them at the horizontal class marks on the graph, issue the following command:

SET VGRID=ON

To remove the lines, set the appropriate parameter OFF.

Syntax How to Add Summary Numbers in Pie and Bar Charts
To print a summary number at the end of each bar on a bar chart or in each slice of a pie
chart, set the parameter BARNUMB

SET BARNUMB=ON

These summary numbers are not available on histograms.

Creating Graphs: GRAPH

18-46 Information Builders

Syntax How to Add Trend Lines on Scatter Plots
Trend lines are useful on scatter plots to give a focus to the sometimes confusing array of
plot points. The trend line represents the notion of the “best fit” calculated by Ordinary
Least Squares (OLS) regression analysis.

When two data fields are scattered across the same horizontal axis, each is given its own
trend line. On some terminals with two-color ribbons the lines are differentiated by color.

The system always requests a value for the parameter GTREND, whenever a scatter
diagram is requested (the default value for GTREND is OFF). To request a trend line set
GTREND on:

SET GTREND=ON

Special Topics
There are a few topics that have general applicability for many graph applications.
Specifically, they are:

• How does FOCUS handle dates in graphs?

• How is missing data handled?

• Is it possible to save formatted graphic output and display it later?

• Is it possible to send graphs to a Personal Computer for display?

• What is the nature of the interface between FOCUS and CA-TELLAGRAF?

• What is the nature of the interface between FOCUS and ICU (Interactive Chart
Utility)?

These are described in the following sections.

 Special Topics

Creating Reports 18-47

Plotting Dates
Numerical fields containing dates are recognized by FOCUS through the formats in their
Master Files. Such fields are interpreted by FOCUS if you name them in ACROSS or BY
phrases in GRAPH requests. To review the various format types, see the Describing Data
manual.

When plotting dates, FOCUS handles them in the following manner:

• If the date field named has a month format, it is plotted in ascending time order
(even though the file is not sorted in ascending date order). Hence, month/year
values of 01/76, 03/76, 09/75 will be plotted by month within year: 09/75, 01/76,
03/76.

• Axis scaling is performed on the basis of days in the month and months in the year.
When the date format includes the day, the scale usually starts at the first day of the
month as the zero axis point.

In some instances you may wish to selectively combine groups of date point plots to
reduce the number of separate points on the horizontal axis. You do this with the
IN-GROUPS-OF option. For example, if the date field format is I6YMD you can display
the data by month rather than by day by grouping it in 30-day increments:

ACROSS DATE IN-GROUPS-OF 30

This eliminates plot points for individual days. If your date format is in a legacy YMD
format you could also redefine the format and divide the field contents by 100 to
eliminate the days:

DATE/I4YM=DATE/100

Creating Graphs: GRAPH

18-48 Information Builders

The example that follows illustrates a graph with date plots.

GRAPH FILE SALES
HEADING
"</6 <22 SAMPLE OF THE"
"<24 GRAPH DATE FACILITIES"
SUM SALES AND UNIT_SOLD ACROSS DATE
END

Handling Missing Data
You can handle missing data selectively in GRAPH requests. You can portray the
missing data as null values or you can choose to ignore missing values and have the plot
span the missing points. This applies to requests containing both ACROSS and BY
phrases, where the ACROSS values are plotted across the horizontal axis.

Normally, missing values on the vertical axis are ignored (VZERO=OFF). If ON, the
values are treated as zero (0).

You instruct the system to ignore missing values through the SET options, GMISSING
and GMISSVAL, or you can set GPROMPT=ON, and select the processing of the
missing values when you execute your request. These SET operations can be done once
for your entire session, or may be done on an individual basis to refine a particular
request. Keep in mind that they remain in effect until you reset the parameters (see SET
Parameters on page 18-60).

 Special Topics

Creating Reports 18-49

The examples that follow illustrate the same request, but with different treatments of
missing values selected.

SET GMISSING=ON, HIST=OFF

GRAPH FILE SALES
HEADING
"</1 <22 SAMPLE OF"
"<24 THE GRAPH "
"<26 FACILITIES FOR"
"<28 MISSING DATA"
SUM RETURNS AND DAMAGED ACROSS PROD_CODE
END

In this example GMISSING is ON and GMISSVAL is 0, so the graph ignores zero values
for products C13 and C17.

Creating Graphs: GRAPH

18-50 Information Builders

The graph below shows the effect of changing the GMISSING parameter to OFF.

SET GMISSING=OFF

REPLOT

The values for products C13 and C17 were shown as positive values with GMISSING
ON. With GMISSING=OFF, the zero values for products C13 and C17 are plotted on the
graph.

Using Fixed-Axis Scales
When creating series of graphs it is often desirable to have the same horizontal and
vertical scales used for each graph in the group. This situation arises whenever your
graph request combines an ACROSS phrase with a BY phrase.

In such requests the ACROSS values are plotted across the horizontal axis and a separate
graph is created for each value of the BY field. The default scales for the graphs will vary
depending on the range of values for each verb object and BY field combination.

To apply the same scale to each graph, turn off the default scaling mechanisms, and
define your own minimum and maximum values for the axis thresholds (see How to Set
the Scale: Assigning Fixed Limits on page 18-41 and How to Set the Scale: Assigning
Fixed Limits on page 18-43).

 Special Topics

Creating Reports 18-51

Saving Formatted GRAPH Output
You can place the output from GRAPH commands into specially formatted SAVE files
for subsequent conversion into printed or displayed graphs. This capability (called
deferred output) is useful for developing graph requests on a device other than the one
you will use to produce the final graph.

The facility described below is available for all ASCII graphics devices that FOCUS
supports, but is not available for the IBM 3279 color graphics terminal, which has a
separate GDDM facility for this purpose (see IBM Devices Using GDDM on page 18-55).
In addition, deferred output cannot be generated from a CONSOLE.

The syntax for the FOCUS facility is

GRAPH FILE ...
SUM ...
.
.
.
ON {GRAPH|TABLE} SAVE [AS savename] FORMAT GRAPH
ON {GRAPH|TABLE} SET parameter value [, parameter value...]
END

where:

ON GRAPH|ON TABLE

Denotes the command environment from which the request is entered. This syntax
suppresses display of the output and returns a message that the file has been saved.

SAVE|SET

Is the action taken.

AS savename

Is an optional parameter that allows you to assign a permanent file name as the target
for the formatted output. The default is FOCSAVE.

parameter value

Is the system value you want to change or set. Any parameter discussed in the
Developing Applications manual can be set or changed here. The syntax is
essentially the same as ON TABLE SET, which is discussed in Chapter 4, Sorting
Tabular Reports.

FORMAT GRAPH

Specifies that the output is to be formatted for whatever graphics device is specified
in the DEVICE parameter (see SET Parameters on page 18-60), and saved in either
the SAVE file or a file you name in an AS phrase.

Creating Graphs: GRAPH

18-52 Information Builders

As an alternative, you can display a graph on the CONSOLE before creating a specially
formatted SAVE file. To use this facility, enter a GRAPH request to generate a display,
as shown below:

GRAPH FILE ...
SUM ...
 .
 .
 .
END

After viewing the graph, use the following syntax to save the graph for later output on
another device:

SAVE [AS savename] FORMAT GRAPH

Syntax How to Display Stored Graphs
To display stored graphs, issue the appropriate form of the REPLOT command from the
output graphics DEVICE

REPLOT [GRAPH|FROM] ddname

where:

REPLOT [GRAPH|FROM]

Is the function to be performed.

ddname

Is the SAVE file name. This must be provided even if the default FOCSAVE file
was used.

Note:

• You need not redefine the graphics device with another SET command. The device
specified through the DEVICE= parameter when the graph was saved still applies.

• You can save the internal matrix produced for a request and issue a REPLOT later in
the session if SAVEMATRIX is set to ON (see the Developing Applications
manual).

You can allocate the file yourself through the appropriate operating system procedure or
you can let FOCUS allocate the SAVE file for you dynamically. If you allow FOCUS to
allocate the file it will allocate a temporary file that you must rename if you wish to keep
it after you log off.

The record layout of the graphics SAVE file is documented in Technical Memorandum
#7704 Description of Deferred Graphics Output (available through your Information
Builders Branch Office). You can process this file yourself if you have a deferred graph
system that accepts low-level terminal graphics commands.

 Special Topics

Creating Reports 18-53

Displaying Graphs With PC/FOCUS or FOCUS for Windows
If you have FOCUS on the mainframe and PC/FOCUS® on your personal computer and
an appropriate communications link, you can extract data from the mainframe files and
send the extract file to the personal computer where you actually issue the GRAPH
request in PC/FOCUS or FOCUS for Windows. This is a useful option because the
printers attached to personal computers often create more attractive graphs than those
produced on the system high-speed printer. FOCUS file transfer facilities are described in
the Developing Applications manual.

Note, however, that you cannot send formatted graphs to the personal computer for
plotting.

Creating Formatted Input for CA-TELLAGRAF
The Interface to CA-TELLAGRAF is a separate optional interface product that you use
to create formatted FOCUS output files ready for processing by CA-TELLAGRAF, the
publication-quality graphics system produced by Computer Associates.

With it, you can write FOCUS GRAPH requests that generate files containing actual
CA-TELLAGRAF commands and all of the necessary data and control information for
producing graphs.

The data may originate in any FOCUS file or any file that FOCUS can read (for example,
QSAM, VSAM, ISAM, IMS, CA-IDMS/DB, ADABAS, TOTAL, SQL, SYSTEM 2000,
Model 204).

Directions for using the Interface can be found in the TELLAGRAF Interface Users
Manual.

Creating Graphs: GRAPH

18-54 Information Builders

Using the FOCUS ICU Interface
The FOCUS ICU Interface is a separate optional interface product that you can use to
generate graphs in conjunction with IBM’s Interactive Chart Utility.

ICU displays graphs and provides menu selections which allow you to change such
factors as graph type, size, and legend, and to send the graph to a printer.

The ICU Interface can place you directly in the ICU environment or can save the graph
format and data for subsequent ICU processing. When you leave ICU, control is returned
to FOCUS.

All ICU graphics requests follow the standard FOCUS rules and each of the default
graphs is represented by an ICU format file distributed with FOCUS.

To use the ICU Interface, issue the command:

SET DEVICE = ICU

Subsequent GRAPH requests will use ICU to generate graphs.

Directions for using this Interface can be found in the ICU Interface Users Manual.

Special Graphics Devices
Graphs created with the FOCUS graphics generator can be printed or displayed in three
levels of detail:

• Low-resolution graphs are produced by high-speed line printers and non-graphics
terminals. Normally, this is adequate graphic information. While such graphs are not
elegant, they are easily produced and allow you to preview graphic scenarios and
refine the shapes and contents of your graphs. Subsequently, to create more
“finished” versions you need only choose a different device or save the formatted
output in a file to print later when a high-resolution device is available.

• Medium-resolution graphs are produced on devices such as Diablo, Trendata, and
Anderson-Jacobson printers. These devices, which are driven by step motors, draw
nearly continuous line plots, but the quality is not adequate for presentations.

• High-resolution graphic devices print continuous line plots, smooth curves, and
create presentation-quality graphs. This category includes both devices created
specifically for displaying graphics images (flat-bed and continuous line plotters,
and color printers), as well as color CRTs. FOCUS supports three types of
high-resolution graphics devices:

• Hewlett-Packard four- and eight-pen plotters.

• IBM graphic CRTs and printers.

• Tektronix CRTs.

An additional option, if you have FOCUS on your PC, is to create an extract file with
FOCUS and send it to your PC where you create the actual graph.

 Special Graphics Devices

Creating Reports 18-55

Medium-Resolution Devices
These devices use step motors to drive platens back and forth across the pages to draw
two series of spaced dots that simulate continuous lines. There are separate device
symbols for the most frequently used printers (see DEVICE in SET Parameters on page
18-60), and a generic device code, HIGHRES (or HIGHRS12 for 12 pitch), for use with
many unlisted printers.

Pie charts are not available on these devices.

When using this type of printer, set PAUSE=ON so that you can adjust the paper in the
printer before drawing the graph.

High-Resolution Devices
This section describes the special considerations that apply when directing your FOCUS
graphs to high-resolution devices from IBM, Hewlett-Packard, and Tektronix.

IBM Devices Using GDDM
To produce graphs on IBM graphics printers or high-resolution graphics terminals you
must have IBM’s Graphical Data Display Manager (GDDM). GDDM provides various
subroutines for saving, printing, and copying graphic screen contents. FOCUS produces
graphs on IBM terminals or printers when you set DEVICE=IBM3279. See your IBM
representative concerning the proper configuration for your device controller and terminal.

GDDM Default Conditions
Whenever graphs are created using FOCUS and GDDM, the printed form of the graph
(activated by pressing the PF4 key) has a default size of 132 by 80 characters on 3284 or
3287 printers. These sizes are independent of the parameters that control the lengths of
the axes. As a default, each graph is presented with a frame (border). If you wish to omit
the frame, set FRAME=OFF.

GDDM Save and Print Facilities
GDDM includes facilities for saving generated graphs that you activate by pressing the
PF1 key to save graphs in an ADMSAVE file on your operating system. Thus saved, you
can subsequently use the IBM program ADMUSF2 (supplied with GDDM) to display the
saved screens.

For special instructions covering the positioning of graphs on IBM 3284 or 3287 printers,
please refer to Technical Memorandum #7689, Plot Table Settings (available through
your Information Builders Branch Office).

Creating Graphs: GRAPH

18-56 Information Builders

Graphics Device Characteristics
To draw vectors, use 7-color displays, or define your own special field patterns, you need
a 3279 Model 2B, 3B, 3SG, or 3X with a 3274 terminal controller and C configuration
support. C supports structured field and attribute processing (SFAP) and the use of
programmed symbols (PS). (The Model 3276 terminal controller does not use C.)

3279 Models 2A and 3A have only Base Color which automatically maps colors to preset
3270 field types:

• Protected intensified becomes white.

• Unprotected intensified becomes red.

• Protected normal intensity fields become blue.

• Unprotected normal intensity fields become green.

Thus, FIDEL is automatically color coded with no programming changes, but only in a
base color. Additional colors are available with the 3SG, 3X and the older B models.

Hewlett-Packard Plotters
The Hewlett-Packard 7220 series plotters translate FOCUS graph requests into 4- or
8-color graphs, suitable for presentations. Color selections and assignments are made
using the standard Hewlett-Packard procedures. (Special pens are available from
Hewlett-Packard for plotting graphs on transparencies for overhead projection.) For
plotters with optional text facilities FOCUS has special parameters for controlling:

• Text positioning (column, line, and spacing).

• Color pen selection (red, blue, green, black).

• Letter sizes (two or four times the default size).

• Special font selection (slanted text).

To activate Hewlett-Packard plotters use the appropriate form of the SET TERM or
DEVICE (see SET Parameters on page 18-60). FOCUS provides default axes lengths
and scaling, but these and the other graphic elements can all be changed by adjusting
SET parameters discussed in Adjusting Graph Elements on page 18-38 and summarized
in SET Parameters on page 18-60.

Ordinarily, plotters are connected in line with a terminal and a modem. Thus, you can
refine your graph requests, viewing the output on the terminal, until you produce exactly
what you want and then set the DEVICE parameter to your plotter and issue the
REPLOT command to produce the hard copy.

Use the plotter controls to position graphs anywhere on sheets of paper up to 11 by 16.5
inches. Unless you change the default paper size, FOCUS prepares output for an 8.5 by
11 inch sheet placed lengthwise in the lower left-hand corner of the plotter. The other
default assignments are as follows:

HAXIS=130, VAXIS=66, GCOLOR=ON

 Command and SET Parameter Summary

Creating Reports 18-57

Tektronix Color Terminals
Tektronix high-resolution CRTs can display the output from GRAPH requests, but only
in black and white. The sizes of the vertical and horizontal axes are set depending on the
device selected and cannot be overridden. Select the appropriate device number from
those listed in SET Parameters on page 18-60.

Command and SET Parameter Summary
The FOCUS GRAPH command plots data retrieved with request statements in the form
of a graph, with horizontal and vertical axes. Many of the elements used in TABLE
requests are used in exactly the same way in GRAPH requests.

The GRAPH environment also includes a set of parameters that control the look of the
graph and offer some additional control at run time (for example, pause to adjust paper
before printing, select a device, etc.).

GRAPH Command
In the syntax samples that follow, the elements are the same as those used in TABLE
requests. The complete set is shown here but the elements are described more fully in
Chapter 4, Sorting Tabular Reports.

Syntax How to Enter the Environment
To enter the GRAPH environment enter the following:

GRAPH FILE filename

Syntax How to Specify Annotating Text
Heading strings can contain any character except the double quotation mark (“), and can
also contain field references and formatting controls.

Heading—This syntax is used to specify graph headings:

[HEADING [CENTER]]
"string1"
["string2"]

Field reference format—This syntax is used to specify field reference format:

<[prefix.]fieldname[>]

Creating Graphs: GRAPH

18-58 Information Builders

Formatting Controls—The following formatting controls may be specified as part of a
graph request:

Tab to column "n"<n
Tab "n" columns to the right<+n
Tab "n" columns to the left <-n
Return to column 1
 and advance "n" lines.</n
Name a color for a line <.color
Select special font
 [BIG, SLANT or BLOCK on HP7220]. .<.fontname
 ("BIG" doubles the character
 sizes, "BLOCK" quadruples them)
Reset controls to default settings <.CLEar

Syntax How to Name the Subject and Graph Type
The following syntax is used to specify the subject and graph type:

{command} object1 [[AND|OVER] object2...object5]

where:

command

Is one of the following: PRINT, WRITE, SUM, ADD or COUNT.

Syntax How to Specify Display Fields
Display fields can be any of the following:

[prefix.]fieldname [AS 'string'] [IN position]
COMPUTE name1 [/format1] = expression1;[AS 'string1']
COMPUTE name2 [/format2] = expression2;[AS 'string2']

Syntax How to Specify Horizontal Sorting of Data Points
The following syntax is used for horizontal sorting of data:

ACROSS fieldname [IN-GROUPS-OF n [TOP]][AS 'string']
ACROSS fieldname [IN position]

 Command and SET Parameter Summary

Creating Reports 18-59

Syntax How to Specify Separate Graphs or Vertical Sorting of Plot
Points
The following syntax is used for specifying separate graphs or vertical sorting of plot
points:

BY fieldname [IN-GROUPS-OF n [TOP]][AS 'string']

Syntax How to Save the Formatted Graph Data in a File
The following syntax is used to save formatted graph data in a file:

ON [GRAPH] SAVE [AS filename] FORMAT GRAPH

Syntax How to Complete the GRAPH Request
To complete a graph request, type the command END on a separate line:

END

If you do not wish to complete the graph request, use one of the following methods to
abort the request and return to FOCUS:

• To quit in the middle of a graph request, type the command QUIT on a separate line:

QUIT

• To terminate the display of a graph, type the command HT from the command line:

HT

Syntax How to Concatenate Unlike Data Sources
To concatenate unlike data sources in a single graph request, divide your request into one
main request that retrieves the first file and a subrequest for each concatenated file. The
main request defines the data fields, sorting criteria, and output format for each file. The
MORE command concatenates each file after the first. The syntax is:

GRAPH FILE file1
 main request
MORE
FILE file2
 subrequest
 MORE
 .
 .
 .
END

Note: IF and WHERE selection tests apply only to the subrequest in which they appear.

Creating Graphs: GRAPH

18-60 Information Builders

SET Parameters
To set the parameters that control the GRAPH environment, use the appropriate variation
of the SET command. The syntax is as follows:

SET parameter=value,parameter=value...

For example:

SET HAXIS=75,VAXIS=40
SET GRID=OFF,BARSPACE=2,BARWIDTH=3

Note:

• Repeat the command SET on each new line.

• When entering more than one parameter on a line, separate them with commas.

• You can use unique truncations of parameter names. You must make sure that they
are unique.

To review the current parameter settings, issue the command

? SET GRAPH

which produces a listing of the values.

The table that follows lists all of the parameters in alphabetic sequence, showing the
name, range of values (default is underlined), and function of each.

Parameter Name Range of Values Parameter Function

AUTOTICK ON/OFF When ON, FOCUS automatically sets the
tick mark intervals. (See also HTICK and
VTICK.)

BARNUMB ON/OFF Places the summary values at the ends of the
bars on bar charts, or slices on pie charts.

BARSPACE 0-20 Specifies the number of lines separating the
bars on bar charts.

BARWIDTH 1-20 Specifies the number of lines per bar on bar
charts.

BSTACK ON/OFF Specifies that the bars on a bar chart are to be
stacked rather than placed side by side.

 Command and SET Parameter Summary

Creating Reports 18-61

Parameter Name Range of Values Parameter Function

DEVICE or
TERMINAL

IBM3270 Specifies the plotting device or terminal to be
used. When the default is used,
low-resolution graphics are sent to your
terminal or to the printer if
PRINT=OFFLINE (see the SET command in
the Developing Applications manual).
Medium- and high-resolution devices are
selected by entering one of the following
parameter settings for the DEVICE (or
TERMINAL).

Medium-resolution devices:
 AJ Specifies Anderson Jacobson - Model AJ830.

 AJ12 Specifies Anderson Jacobson - Model AJ832
(12 Pitch).

 DIABLO Specifies Diablo - Model 1620.

 DIABLO12 Specifies Diablo - Model 1620 (12 Pitch).

 GS Specifies Gencom.

 GS12 Specifies Gencom (12 Pitch).

 HIGHRES Specifies generic device for most
medium-resolution graphic devices.

 HIGHRS12 Specifies generic device -see above (12
Pitch).

 TRENDATA Specifies Trendata - Model 4000A.

 TRENDT12 Specifies Trendata - Model 4000A (12
Pitch).

Creating Graphs: GRAPH

18-62 Information Builders

Parameter Name Range of Values Parameter Function

High-resolution devices from Hewlett-Packard:
 HP7220 Specifies HP Models 7229A and 7470A.

Both are 4-pen plotters with no paper
advance. Model 7470 requires a special Y
cable (Part #17455).

 HP7220S Specifies HP Model 7220S, 4-pen plotter
with paper advance.

 HP7220C Specifies HP Models 7220C and 7475A.
Both are 8-pen plotters with no paper
advance. Model 7475 requires a special Y
cable (Part #17455).

 HP7220T Specifies HP Model 7220T, 8-pen plotter
with paper advance.

 HP7221 Specifies HP Model 7221, 4-pen plotter with
no paper advance.

 HP7221S Specifies HP Model 7221S, 4-pen plotter
with paper advance.

 HP7221C Specifies HP Model 7221C, 8-pen plotter
with no paper advance.

 HP7221T Specifies HP Model 7221T, 8-pen plotter
with paper advance.

Note: The default horizontal and vertical axes for all Hewlett-Packard devices are as
follows:
HAXIS=100, VAXIS=50.

 Command and SET Parameter Summary

Creating Reports 18-63

Parameter Name Range of Values Parameter Function

High-resolution devices from IBM:

 IBM3279 Specifies one of the following devices:

Any IBM 3270 series device that supports
GDDM graphics, such as the 3279-S3G,
3179, or 3472. This includes PCs with fully
compatible 3270 series hardware and
software.

Printers: Any IBM 3270 series printer that
supports GDDM graphics such as the
3287-2C and the 4224.

Note: IBM’s Graphical Data Display Manager (GDDM) is required for all of these
devices. Entering this value automatically sets the following GRAPH parameter values:
HAXIS=80, VAXIS=32, and GCOLOR=ON. For any monochrome device, you should
set GCOLOR=OFF; for any Model 2 device (24x80 screen), you should set VAXIS=-24.

Parameter Name Range of Values Parameter Function

High-resolution devices from Tektronix:

 TEK4010 Specifies one of the following models: 4010,
4050 series and 4100 series (B/W only).
Automatically sets HAXIS=74, VAXIS=35,
and GCOLOR=OFF.

 TEK4012 Specifies Model 4012. Automatically sets
HAXIS=74, VAXIS=35, and
GCOLOR=OFF.

 TEK4013 Specifies Model 4013. Automatically sets
HAXIS=74, VAXIS=35, and
GCOLOR=OFF.

 TEK4014 Specifies Model 4014. Automatically sets
HAXIS=133, VAXIS=64, and
GCOLOR=OFF.

 TEK4014E Specifies Model 4014E. Automatically sets
HAXIS=133, VAXIS=64, and
GCOLOR=OFF.

 TEK4015 Specifies Model 4015. Automatically sets
HAXIS=74, VAXIS=35, and
GCOLOR=OFF.

Creating Graphs: GRAPH

18-64 Information Builders

Parameter Name Range of Values Parameter Function

High-resolution devices from Tektronix:

 TEK4015E Specifies Model 4015E. Automatically sets
HAXIS=74, VAXIS=35, and
GCOLOR=OFF.

 TEK4025 Specifies Model 4025. Automatically sets
HAXIS=80, VAXIS=32, and
GCOLOR=OFF.

 TEK4027 Specifies Model 4027. Automatically sets
HAXIS=80, VAXIS=32, and
GCOLOR=ON.

 TEK4662 Specifies Model 4662. Plot address is D. It
is recommended that you set
GCOLOR=OFF, HAXIS=80, VAXIS=32. If
the Model 4662 is connected to a Model
4025, set DEVICE=TEK4025. If the Model
4662 is connected to a Model 4027, set
DEVICE=TEK4027.

Parameter Name Range of Values Parameter Function

FRAME ON/OFF For GDDM graphics, ON (the default)
indicates you want a frame around your
graph. To omit the Frame, set OFF.

GCOLOR
(or GRIBBON)

ON/OFF On medium- and high-resolution devices,
setting this parameter OFF causes different
black and white patterns to be substituted for
colors. On medium-resolution devices,
setting it ON causes alternation between
black and red ribbons on multiline plots.
Note: 3287 printers use black, red, blue, and
green.

GMISSING ON/OFF If ON, specifies that variables with the value
specified in GMISSVAL are to be ignored.

 Command and SET Parameter Summary

Creating Reports 18-65

Parameter Name Range of Values Parameter Function

GMISSVAL nn Specifies the variable value that represents
missing data.

GPROMPT ON/OFF When ON, FOCUS prompts for all pertinent
graph parameters.

GRIBBON See GCOLOR.

GRID ON/OFF When ON, specifies that a grid of parallel
horizontal lines is to be drawn on the graph
at the vertical class marks (see also
VGRID).

GTREND ON/OFF When ON, specifies that a trend line is to
appear on scatter diagrams.

HAUTO ON/OFF Specifies automatic scaling of the horizontal
axis unless overridden by the user. If OFF,
user must supply values for HMAX and
HMIN.

HAXIS 20-130 Specifies the width in characters of the
horizontal axis. This parameter can be
adjusted for graphs generated OFFLINE.
HAXIS is ignored for ONLINE displays
since FOCUS automatically adjusts the
width of the graph to the width of the
terminal.

HCLASS nnn Specifies the horizontal class interval when
AUTOTICK=OFF.

HISTOGRAM ON/OFF When ON, FOCUS draws a histogram
instead of a curve when values on the
horizontal axis are not numeric.

HMAX nnn Specifies the maximum value on the
horizontal axis when the automatic scaling
is not used (HAUTO=OFF).

HMIN nnn Specifies the minimum value on the
horizontal axis when the automatic scaling
is not used (HAUTO=OFF).

HSTACK ON/OFF Specifies that the bars on a histogram are to
be stacked rather than placed side by side.

Creating Graphs: GRAPH

18-66 Information Builders

Parameter Name Range of Values Parameter Function

HTICK nnn Specifies the horizontal axis tick mark
interval, when AUTOTICK is OFF.

PAUSE ON/OFF Specifies whether there will be a pause for
paper adjustment on the plotter after the
request is executed.

PIE ON/OFF Specifies a pie chart is desired (only
available on high-resolution devices).

PLOT Specifies the width and height settings for a
graphic printer if DEVICE=IBM3279 or
HIGHRES. Hexadecimal values must be
supplied. For example

SET PLOT=0050,0018

produces a printed plot 80 by 24 decimal
characters (50 hex = 80 decimal, 18 hex =
24 decimal).

When used, the PLOT parameter must be
the last parameter set.

PRINT ONLINE/OFFLINE When OFFLINE is entered, the graph is
printed on the system high-speed printer.

TERM See DEVICE.

VAUTO ON/OFF Specifies automatic scaling of the vertical
axis unless overridden by the user. If OFF,
user must supply values for VMAX and
VMIN.

VAXIS 20-66 Page length in lines. This parameter can be
adjusted for graphs generated OFFLINE.
VAXIS is ignored for ONLINE displays
since FOCUS automatically adjusts the
height of the graph to the height of the
terminal.

VCLASS nnn Specifies the vertical class interval when
AUTOTICK=OFF.

VGRID ON/OFF When ON, specifies that a grid of parallel
vertical lines is to be drawn on the graph at
the horizontal class marks (see also GRID).

 Command and SET Parameter Summary

Creating Reports 18-67

Parameter Name Range of Values Parameter Function

VMAX nnn Specifies the maximum value on the vertical
axis when the automatic scaling is not used
(VAUTO=OFF).

VMIN nnn Specifies the minimum value on the vertical
axis when the automatic scaling is not used
(VAUTO=OFF).

VTICK nnn Specifies the vertical axis tick mark interval,
when AUTOTICK is OFF.

VZERO ON/OFF Normally missing values on the vertical axis
are ignored (VZERO=OFF). If ON, the
values are treated as zero (0).

Creating Reports 19-1

CHAPTER 19

Using SQL to Create Reports

Topics:

• Supported and Unsupported SQL
Statements

• Using SQL Translator Commands

• SQL Translator Support for Date, Time,
and Timestamp Fields

• Index Optimized Retrieval

• TABLEF Optimization

• SQL INSERT, UPDATE, and DELETE
Commands

SQL users can issue report requests that combine SQL
statements with TABLE formatting phrases to take advantage of
a wide range of report preparation options.

These combined requests are supported through the SQL
Translator, which converts ANSI Level 2 SQL statements into
executable FOCUS requests.

You can use the SQL Translator to retrieve and analyze FOCUS
and DBMS data.

Using SQL to Create Reports

19-2 Information Builders

Supported and Unsupported SQL Statements
SQL Translation Services is ANSI Level 2 compliant. This facility supports many, but
not all, SQL statements. iWay and specific RDBMS engines may also support the alpha1
CONCAT alpha2' syntax. For details, see Supported SQL Statements on page 19-2 and
Unsupported SQL Statements on page 19-4.

Many of the supported SQL statements are requests that are candidates for Dialect
Translation. Dialect Translation is a feature that enables a server to route inbound SQL
requests to SQL-capable sub-servers and data adapters wherever possible. Dialect
Translation avoids translation to iWay Data Manipulation Language (DML), while
maintaining data location transparency. Dialect Translation transforms a standard SQL
statement into one that can be processed by the destination SQL engine, while preserving
the semantic meaning of the statement.

Note: Because the SQL Translator is ANSI Level 2 compliant, some requests that
worked in prior releases may no longer work.

Reference Supported SQL Statements
SQL Translation Services supports the following:

• SELECT including SELECT ALL and SELECT DISTINCT.

• CREATE TABLE. The following data types are supported for CREATE TABLE:
REAL, DOUBLE PRECISION, FLOAT, INTEGER, DECIMAL, CHARACTER,
SMALLINT, DATE, TIME, and TIMESTAMP.

• INSERT, UPDATE, and DELETE for relational, IMS, and FOCUS data sources.

• Equijoins and non-equijoins.

• Outer JOINs, subject to certain restrictions. See SQL Joins on page 19-8 for details.

• CREATE VIEW and DROP VIEW.

• PREPARE and EXECUTE.

• Delimited identifiers of table names and column names. Table and column names
containing embedded blanks or other special characters in the SELECT list should be
enclosed in double quotation marks.

• Column names qualified by table names or by table tags.

• The UNION [ALL], INTERSECT [ALL], and EXCEPT [ALL] operators.

• Non-correlated subqueries for all requests in the WHERE predicate and in the
FROM list.

• Correlated subqueries for requests that are candidates for Dialect Translation to an
RDBMS that supports this feature. Note correlated subqueries are not supported for
FOCUS and other non-relational data sources.

 Supported and Unsupported SQL Statements

Creating Reports 19-3

• Numeric constants, literals, and expressions in the SELECT list.

• Scalar functions for queries that are candidates for Dialect Translation if the RDBMS
engine supports the scalar function type. These include: ABS, CHAR,
CHAR_LENGTH, CONCAT, COUNTBY, DATE, DAY, DAYS, DECIMAL,
EDIT, EXTRACT, FLOAT, HOUR, IF, INT, INTEGER, LCASE, LENGTH, LOG,
LTRIM, MICROSECOND, MILLISECOND, MINUTE, MONTH, POSITION,
RTRIM, SECOND, SQRT, SUBSTR (or SUBSTRING), TIME, TIMESTAMP,
TRIM, VALUE, UCASE, and YEAR.

Note that the following functions are not supported by FOCUS for S/390: DIGITS,
HEX, VARGRAPHIC.

• The concatenation operator, '||' ,used with literals or alphanumeric columns.

• The following aggregate functions: COUNT, MIN, MAX, SUM, and AVG.

• The following expressions can appear in conditions: CASE, NULLIF, and
COALESCE.

• Date, time, and timestamp literals of several different formats. For details, see SQL
Translator Support for Date, Time, and Timestamp Fields on page 19-15.

• All requests that contain ANY, SOME, and ALL that do not contain =ALL, <>ANY,
and <>SOME.

• =ALL, <>ANY, and <>SOME for requests that are candidates for Dialect
Translation if the RDBMS engine supports quantified subqueries.

• The special registers USER, CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP, CURRENT_EDASQLVERSION, and
CURRENT_TIMEZONE.

• NULL and NOT NULL predicates.

• LIKE and NOT LIKE predicates.

• IN and NOT IN predicates.

• Date and time arithmetic.

• EXISTS and NOT EXISTS predicates.

• GROUP BY clause expressed using explicit column names.

• ORDER BY clause expressed using explicit column names or column numbers.

• FOR FETCH ONLY feature to circumvent record locking.

• Continental Decimal Notation (CDN) when the CDN variable is set.

• National language support (NLS).

• Temporary defined columns. (Permanent defined columns are supported-that is,
those that are defined in the iWay Dynamic Catalog or in the Master File.)

Using SQL to Create Reports

19-4 Information Builders

Reference Unsupported SQL Statements
SQL Translation Services does not support the following:

• More than 15 joins per SELECT. This limit is set by SQL; FOCUS supports up to 16
joins.

• ALIAS names in Master Files and the use of formatting options to format output.

• Unique truncations of column names.

• Correlated subqueries for DML Generation.

• =ALL, <>ANY, and <>SOME for DML Generation.

Reference SQL Translator Reserved Words
The following words may not be used as field names in a Master File that is used with the
SQL Translator:

• ALL

• COUNT

• SUM

• MAX

• MIN

• AVG

• CURRENT

• DISTINCT

• USER

 Using SQL Translator Commands

Creating Reports 19-5

Using SQL Translator Commands
The SQL command may be used to report from any supported data source or set of data
sources. Standard TABLE phrases for formatting reports can be appended to the SQL
statements to take advantage of a wide range of report preparation options.

Note: If you need to join data sources for your request, you have two options: you can
use the JOIN command before you issue any SQL statements, or you can use the
WHERE predicate in the SQL SELECT statement to join the required files dynamically.
See SQL Joins on page 19-8.

Syntax How to Use SQL Translator Commands
SQL
sql statement;
[ECHO|FILE]
[TABLE phrases]
END

where:

SQL

Is the SQL command identifier, which invokes the SQL Translator.

Note: The SQL command components must appear in the order represented above.

sql statement

Is a supported SQL statement. The statement must be terminated by a semicolon; it
can continue for more than one line. For details, see Supported SQL Statements on
page 19-2.

Within the SQL statement, field names are limited to 48 characters (an ANSI
standard Level 2 limitation); view names generated through the SQL CREATE
VIEW statement are limited to 18 characters; subqueries can be nested up to 15
levels deep. Correlated subqueries are not supported by FOCUS and other
non-relational data sources.

ECHO

Are optional debugging phrases that capture the generated TABLE request. These
options are placed after the SQL statement.

FILE [name]

Writes the translated TABLE phrases to the named procedure. If you do not supply a
file name, a default name is assigned when the request runs; the file is then deleted.

TABLE phrases

Optional TABLE formatting phrases. For additional information, see TABLE
Formatting Phrases in SQL Requests on page 19-6.

END or QUIT

Required to terminate procedure.

Using SQL to Create Reports

19-6 Information Builders

Example Using SQL Translator Commands
The following request contains an SQL statement and TABLE formatting commands:

SQL
SELECT BODYTYPE, AVG(MPG), SUM(SALES)
FROM CAR
WHERE RETAIL_COST > 5000
GROUP BY BODYTYPE;
TABLE HEADING CENTER
"AVERAGE MPG AND TOTAL SALES PER BODYTYPE"
END

Reference TABLE Formatting Phrases in SQL Requests
You can include TABLE formatting phrases in an SQL request, subject to the following
rules:

• You can use TABLE formatting phrases with SELECT and UNION only.

• You must introduce the formatting phrases with the word TABLE.

• You may specify headings and footings, describe actions with an ON phrase, or use
the ON TABLE SET command. Additionally, you can use ON TABLE HOLD or
ON TABLE PCHOLD to create an extract file. You can also specify READLIMIT
and RECORDLIMIT tests.

For details on headings and footings, see Chapter 9, Customizing Tabular Reports.

For details on ON TABLE HOLD or ON TABLE PCHOLD, see Chapter 11, Saving
and Reusing Report Output.

• You cannot specify additional display fields, ACROSS fields, WHERE or IF criteria
(other than READLIMIT or RECORDLIMIT tests), or calculated values; BY
phrases are ignored.

Automatic Passthru
If you are accessing a relational data source, the SQL Translator automatically generates
a Direct SQL Passthru request when the SQL submitted contains valid syntax for the
RDBMS being accessed. As a result, the SQL code is not processed by FOCUS, but
instead is sent directly to the RDBMS. Column names displayed in the report will contain
the RDBMS table’s column names, which correspond with the Master File’s ALIAS
values. If this behavior is not desirable, you can issue the following command in the SQL
query:
SQL
SET APT = OFF;
sql statement
END

 Using SQL Translator Commands

Creating Reports 19-7

The SQL SELECT Statement
The basic SQL SELECT statement translates into one or more TABLE PRINT or
TABLE SUM commands, depending on whether individual field display or aggregation
is applied in the request. For details, see Chapter 2, Displaying Report Data.

Note: If you are accessing a relational data source, Automatic Passthru may be invoked
as described in Automatic Passthru on page 19-6.

The SQL statement SELECT * translates to a PRINT of every field in the Master File and
uses all of the fields of the Cartesian product. This is a quick way to display a file,
provided it fits in a reasonable number of screens for display, or provided you use ON
TABLE HOLD or ON TABLE PCHOLD to retain retrieved data in a file for reuse. For
details, see Chapter 11, Saving and Reusing Report Output.

SQL functions (such as COUNT, SUM, MAX, MIN, AVG) are supported in SELECT
lists and HAVING conditions. Expressions may be used as function arguments.

The function COUNT (*) translates to a count of the number of records produced by
printing all fields in the Master File. This is the same as counting all rows in the Cartesian
product that results from a SELECT on all fields.

Whenever possible, expressions in the SQL WHERE predicate are translated into
corresponding WHERE criteria in the TABLE request. Expressions in SELECT lists
generate virtual fields. The SQL HAVING clauses also translate into corresponding
WHERE TOTAL criteria in the TABLE request. The SQL LIKE operator is translated
directly into the corresponding LIKE operator in the WHERE criteria of the TABLE
request. For details on record selection in TABLE requests, see Chapter 5, Selecting
Records for Your Report.

Only subqueries based on equality, when the WHERE expression is compared to a
subquery using an equal (=) sign, are supported. For example: WHERE field = (SELECT
...).

The SQL UNION operator translates to a TABLE request that creates a HOLD file for
each data source specified, followed by a MATCH command with option HOLD
OLD-OR-NEW, which combines records from both the first (old) data source and the
second (new) data source. For details, see Chapter 14, Merging Data Sources.

For related information see Supported SQL Statements on page 19-2 and How to Use SQL
Translator Commands on page 19-5.

Using SQL to Create Reports

19-8 Information Builders

SQL Joins
When performing SQL joins, the formats of the joined fields must be the same. Join
fields need not be indexed, and non-equijoins are supported.

Recursive, outer, and inner joins are supported. Inner join is the default.

Syntax How to Create an Inner JOIN
Two syntax variations are supported for inner joins.

Variation 1

SQL
SELECT fieldlist FROM file1 [alias1], file2 [alias2]
[WHERE where_condition];
END

Variation 2

SQL
SELECT fieldlist FROM file1 [alias1] INNER JOIN file2 [alias2]
ON join_condition [INNER JOIN ...]
[WHERE where_condition];
END

where:

fieldlist

Identifies which fields are to be retrieved from which data sources.

Joined fields in the SQL WHERE predicate must be qualified if the names are not
unique; that is, they must be specified with their corresponding file names (or file
aliases). For example:
{file1|alias1}.field1, {file2|alias2}.field2

FROM

Introduces the data sources to be joined.

file1, file2

Are the data sources to be joined.

alias1, alias2

Are optional alternate names for the data sources to be joined.

where_condition

Is an optional selection condition for the joined answer set. Joined rows that do not
satisfy this condition are eliminated from the returned answer set. If omitted in
Variation 1, the answer set is the Cartesian product of the two data sources.

join_condition

Is the join condition.

 Using SQL Translator Commands

Creating Reports 19-9

Syntax How to Create an Outer JOIN
SQL
SELECT fieldlist FROM file1 {LEFT|RIGHT} JOIN file2
ON join_condition [{LEFT|RIGHT} JOIN ...]
WHERE where_condition
END

where:

fieldlist

Identifies which fields are to be retrieved from which data sources.

Joined fields in the SQL WHERE predicate must be qualified if the names are not
unique; that is, they must be specified with their corresponding file names (or file
aliases). For example:
{file1|alias1}.field1, {file2|alias2}.field2

FROM

Introduces the data sources to be joined.

file1, file2

Are the data sources to be joined.

alias1, alias2

Are optional alternate names for the data sources to be joined.

join_condition_

Is the join condition. The condition must specify equality. For example:
T1.A=T2.B.

where_condition

Is an optional selection condition for the joined answer set. Joined rows that do not
satisfy this condition are eliminated from the returned answer set.

Reference JOIN Name Assignments From SQL Translator
Note that joins issued by the SQL Translator are assigned names in the format

SQLJNMnn

where:

SQLJNM

Is the SQL Translator join prefix.

nn

Is a number between 01 and 16 assigned in the order in which the joins are created.
(FOCUS supports up to a maximum of 16 joins.)

For example, the first join will have the AS name SQLJNM01, the second join will
be named SQLJNM02, and so on, up to SQLJNM16.

All joins are automatically created and cleared by the SQL Translator. No user-specified
JOINS are affected.

Using SQL to Create Reports

19-10 Information Builders

Example Using Qualified Field Names in SQL Joins
In the following example, T.A and U.B are qualified field names:

SQL
 SELECT T.A, T.B
 FROM T, U
 WHERE T.A = U.B;
END

Example Using Recursive SQL Joins
In the following statement, A and B are aliases for the same data source, CAR. The
output from CAR is pairs of B values that have the same A values:

SQL
 SELECT A.SEATS, B.SEATS
 FROM CAR A, CAR B
 WHERE A.MODEL = B.MODEL;
END

Note that all field names in the SELECT clause must be unique or qualified.

Reference SQL JOIN Considerations
• In standard SQL, WHERE field=‘a’ selects records where the field has the value ‘a’

or ‘A’. The SQL Translator is case-sensitive and returns only the exact value
requested (‘a’ only).

• The SQL comparison operators ANY, SOME, and ALL are supported, with the
exception of =ALL, <>ANY, and <>SOME.

• Sub-selects are not supported in HAVING conditions.

• In a multi-segment structure, parent segments are omitted from reports if no
instances of their descendant segments exist. This is an inner join.

• The SQL Translator applies optimization techniques when constructing joins. These
are described in Index Optimized Retrieval on page 19-20.

 Using SQL Translator Commands

Creating Reports 19-11

SQL CREATE TABLE and INSERT Commands
SQL Translator supports the commands CREATE TABLE and INSERT INTO table:

• CREATE TABLE is used to create a new data source table. CREATE TABLE only
generates single-segment Master Files.

• INSERT INTO is used to insert a row or block of rows into a table or view.
Single-record insert with actual data values is supported.

These commands enable you to create tables to enhance reporting efficiency.

Note: When applications are enabled, the Master File and data source are written to the
APPHOLD directory. When applications are disabled, the Master File and data source are
written to the TEMP directory.

Reference Usage Notes for CREATE TABLE and INSERT Commands

• According to normal SQL data definition syntax, each CREATE TABLE or INSERT
statement must terminate with a semicolon.

• The CREATE TABLE command supports the INTEGER, SMALLINT, FLOAT,
CHARACTER, DATE, TIME, TIMESTAMP, DECIMAL, DOUBLE PRECISION
and REAL data types. Decimals are rounded in the DOUBLE PRECISION and
REAL data types.

• When using the CREATE TABLE and INSERT commands, the data type FLOAT
should be declared with a precision and used in an INSERT without the ‘E’
designation. This requires the entire value to be specified without an exponent.

• The CHECK and DEFAULT options are not supported with the CREATE TABLE
command.

Example Creating a Table With Single-Record Insert
The following example shows the use of the single-record insert, creating the table U
with one record:

-* Single-record insert example.
-*
SQL
CREATE TABLE U (A INT, B CHAR(6), C CHAR(6), X INT, Y INT);
END
SQL
INSERT INTO U (A,B,C,X,Y) VALUES (10, '123456','654321', 10, 15);
END

Using SQL to Create Reports

19-12 Information Builders

SQL CREATE VIEW and DROP VIEW Commands
A view is a transient object that inherits most of the characteristics of a table. Like a
table, a view is composed of rows and columns:

• CREATE VIEW is used to create views. (Note that CREATE VIEW does not put the
view in the system catalog.)

• DROP VIEW is used to explicitly remove transient tables and views from the
environment.

Tip:

To use the view, issue a SELECT from the view. You cannot issue a TABLE request
against the view because the view is not extracted as a physical FOCUS data source. To
create a HOLD file for extracted data, specify ON TABLE HOLD after the SQL statements.
For details on creating HOLD files, see Chapter 11, Saving and Reusing Report Output.

Syntax How to Create a View
The SQL Translator supports the following SQL statement:

CREATE VIEW viewname AS subquery ;

where:

viewname

Is the name of the view.

subquery

Is a SELECT statement that nests inside: a WHERE, HAVING, or SELECT clause
of another SELECT; an UPDATE, DELETE, or INSERT statement; another
subquery.

Example Creating and Reporting From an SQL View
The following example creates a view named XYZ:

SQL
CREATE VIEW XYZ
 AS SELECT CAR, MODEL
 FROM CAR;
END

To report from the view, issue:

SQL
 SELECT CAR, MODEL
 FROM XYZ;
END

According to normal SQL data definition syntax, each CREATE VIEW statement must
terminate with a semicolon.

 Using SQL Translator Commands

Creating Reports 19-13

Example Dropping an SQL View
The following request removes the XYZ view:

SQL
 DROP VIEW XYZ;
END

Cartesian Product Style Answer Sets
The SQL Translator automatically generates Cartesian product style answer sets unless
you explicitly turn this feature off. However, it is advisable to leave the CARTESIAN
setting on since turning it off does not comply with ANSI standards. For details on the
SET CARTESIAN command, see Chapter 14, Merging Data Sources.

Continental Decimal Notation (CDN)
Continental decimal notation displays numbers using a comma to mark the decimal
position and periods for separating significant digits into groups of three. This notation is
available for SQL Translator requests.

Example Using CDN to Separate Digits
The following example creates a column defined as 1.2 + SEATS:

SET CDN=ON
SQL
 SELECT SEATS + 1,2
 FROM CAR;
END

Using SQL to Create Reports

19-14 Information Builders

Specifying Field Names in SQL Requests
In an SQL request, you can specify fields using:

• Delimited identifiers. A field name may contain (but not begin with) the symbols .,
#, @, _, and $. You must enclose such field names in double quotation marks when
referring to them in requests.

• Qualified field names. You can qualify a field name with file and file alias names.
File alias names are described in the discussion of joins in SQL Joins on page 19-8.
See the Describing Data manual for more information on qualified field names.

• Field names with embedded blanks and special characters. A SELECT list can
specify field names with embedded blanks or other special characters; you must
enclose such field names in double quotation marks. Special characters are any
characters not listed in Delimited Identifiers and not contained in the national
character set of the FOCUS environment installed.

Example Specifying a Field Name With a Delimited Identifier
The following field identifier can be included in a request:

"COUNTRY.NAME"

Example Qualifying a Delimited Field Name
To qualify the delimited field name COUNTRY.NAME with its file name, use the
syntax:

CAR."COUNTRY.NAME"

 SQL Translator Support for Date, Time, and Timestamp Fields

Creating Reports 19-15

SQL UNION, INTERSECT, and EXCEPT Operators
The SQL UNION, INTERSECT, and EXCEPT operators generate MATCH logic. The
number of files that can participate is determined by the MATCH limit. UNION with
parentheses is supported.

• SELECT A UNION SELECT B retrieves rows in A or B or both. (This is equivalent
to the MATCH phrase OLD-OR-NEW.)

• INTERSECT retrieves rows in both A and B. (This is equivalent to the MATCH
phrase OLD-AND-NEW.)

• EXCEPT retrieves rows in A, but not B. (This is equivalent to the MATCH phrase
OLD-NOT-NEW.)

Match logic merges the contents of your data sources. For details, see Chapter 14,
Merging Data Sources.

Numeric Constants, Literals, Expressions, and Functions
The SQL SELECT list, WHERE predicate, and HAVING clause can include numeric
constants, literals enclosed in single quotation marks, expressions, and any scalar
functions.

Internally, a virtual field is created for each such item in the SELECT list; the value of
the virtual field is provided in the answer set.

SQL Translator Support for Date, Time, and
Timestamp Fields

Several new data types have been defined to the SQL Translator to support date-time
fields in the WHERE predicate or field list of a SELECT statement.

In addition, time or timestamp columns can be defined in relational or FOCUS data
sources. These are accessible to the translator. Values can be entered using INSERT and
UPDATE statements and displayed in SELECT statements.

Time or timestamp data items (columns or literals) can be compared in conditions. Time
values or timestamp values can be added or subtracted from each other, with the result
being the number of seconds difference. Expressions of the form T + 2 HOURS or TS +
5 YEARS are allowed. These expressions will be translated to calls to the date-time
functions described in the Using Functions manual.

All date formats for actual and virtual fields in the Master File are converted to the form
YYYYMMDD. If you specify a format that lacks any component, the SQL Translator
supplies a default value for the missing component. To specify a portion of a date, such
as the month, use a virtual field with an alphanumeric format.

Using SQL to Create Reports

19-16 Information Builders

Reference SQL Translator Support for Date, Time, and Timestamp Fields
In the following chart, fff represents the second to three decimal places (milliseconds)
and ffffff represents the second to six decimal places (microseconds).

The following formats are allowed as input to the Translator:

Format USAGE Attribute in
Master File

Date Components

Date YYMD YYYY-MM-DD

Hour HH HH

Hour through minute HHI HH.MM

Hour through second HHIS HH.MM.SS

Hour through millisecond HHISs HH.MM.SS.fff

Hour through microsecond HHISsm HH.MM.SS.ffffff

Year through hour HYYMDH YYYY-MM-DD HH

Year through minute HYYMDI YYYY-MM-DD HH.MM

Year through second HYYMDS YYYY-MM-DD HH.MM.SS

Year through millisecond HYYMDs YYYY-MM-DD HH.MM.SS.fff

Year through microsecond HYYMDm YYYY-MM-DD
HH.MM.SS.ffffff

Note:

• Time information may be given to the hour, minute, second, or fraction of a second.

• The separator within date information may be either a hyphen or a slash.

• The separator within time information must be a colon.

• The separator between date and time information must be a space.

 SQL Translator Support for Date, Time, and Timestamp Fields

Creating Reports 19-17

Extracting Date-Time Components Using the SQL Translator
The SQL Translator supports several functions that return components from date-time
values. You can use the EXTRACT statement to extract components.

You can also use the TRIM subroutine to remove leading and or trailing patterns from
date, time, and timestamp values. For details, see the Using Functions manual.

Syntax Date, Time, and Timestamp Functions Accepted by the SQL
Translator
The following functions return date-time components as integer values. Assume x is a
date-time value:

Function Return Value

YEAR(x) year

MONTH(x) month number

DAY(x) day number

HOUR(x) hour

MINUTE(x) minute

SECOND(x) second

MILLISECOND(x) millisecond

MICROSECOND(x) microsecond

Example Using SQL Translator Date, Time, and Timestamp Functions
Using the timestamp column TS whose value is '1999-11-23 07:32:16.123456':

YEAR(TS) = 1999
MONTH(TS) = 11
DAY(TS) = 23
HOUR(TS) = 7
MINUTE(TS) = 32
SECOND(TS) = 16
MILLISECOND(TS) = 123
MICROSECOND(TS) = 123456

Using SQL to Create Reports

19-18 Information Builders

Example Using SQL Translator Date, Time, and Timestamp Functions in a
SELECT Statement
Assume that a FOCUS data source called VIDEOTR2 includes a Date-time field named
TRANSDATE.

SQL
SELECT TRANSDATE,
YEAR(TRANSDATE), MONTH(TRANSDATE),
MINUTE(TRANSDATE)
FROM VIDEOTR2;
FILE VIDSQL END

The SQL Translator produces the following virtual fields for functions, followed by a
TABLE request to display the output:
-SET &SQLVARFN=&FOCFIELDNAME ;
SET FIELDNAME=NOTRUNC
SET COUNTWIDTH=ON
JOIN CLEAR SQLJNM*
END

DEFINE FILE VIDEOTR2
SQLDEF01/I5 = HPART(TRANSDATE,'YEAR','I5'); SQLDEF02/I5 = INT(SQLDEF01);
SQLDEF03/I3 = HPART(TRANSDATE,'MONTH','I3'); SQLDEF04/I3 = INT(SQLDEF03);
SQLDEF05/I3 = HPART(TRANSDATE,'MINUTE','I3'); END

TABLEF FILE VIDEOTR2
PRINT TRANSDATE SQLDEF02 SQLDEF04 SQLDEF05 ON TABLE SET CARTESIAN ON
ON TABLE SET ASNAMES ON
ON TABLE SET HOLDLIST PRINTONLY
END

The output is:

TRANSDATE SQLDEF02 SQLDEF04 SQLDEF05
1999/06/20 04:14 1999 6 14
1991/06/27 02:45 1991 6 45
1996/06/21 01:16 1996 6 16
1991/06/21 07:11 1991 6 11
1991/06/20 05:15 1991 6 15
1999/06/26 12:34 1999 6 34
1919/06/26 05:45 1919 6 45
1991/06/21 01:10 1991 6 10
1991/06/19 07:18 1991 6 18
1991/06/19 04:11 1991 6 11
1998/10/03 02:41 1998 10 41
1991/06/25 01:19 1991 6 19
1986/02/05 03:30 1986 2 30
1991/06/24 04:43 1991 6 43
1991/06/24 02:08 1991 6 8
1999/10/06 02:51 1999 10 51
1991/06/25 01:17 1991 6 17

 SQL Translator Support for Date, Time, and Timestamp Fields

Creating Reports 19-19

Syntax Using the SQL Translator EXTRACT Function to Extract
Date-Time Components
You can use the following ANSI standard function to extract date-time components as
integer values:

EXTRACT(component FROM value)

where:

component

Is one of the following: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MILLISECOND, or MICROSECOND.

value

Is a date-time, DATE, TIME, or TIMESTAMP field, constant or expression.

For example, the following are equivalent:

EXTRACT(YEAR FROM TS)
YEAR(TS)

Example Using the EXTRACT Function
SELECT D. EXTRACT(YEAR FROM D), EXTRACT(MONTH FROM D),
EXTRACT(DAY FROM D) FROM T

This request produces rows similar to the following:

1999-01-01 1999 1 1
2000-03-03 2000 3 3

Using SQL to Create Reports

19-20 Information Builders

Index Optimized Retrieval
The SQL Translator improves query performance by generating optimized code that
enables the underlying retrieval engine to access the selected records directly, without
scanning all segment instances.

For more information about index optimization and optimized join statements, see the
iWay documentation for your platform.

Optimized Joins
The SQL Translator accepts joins in SQL syntax. SQL language joins have no implied
direction; that is, the concepts of host and cross-referenced files do not exist in SQL.

The SQL Translator analyzes each join in order to identify an efficient implementation,
as reflected in the following illustration. First, it assigns costs to the candidate joins in the
query:

• Cost = 1 for an equijoin to a field that can participate as a cross-referenced field
according to FOCUS join rules. This is common in queries against relational tables
with equijoin predicates in the WHERE clause.

• Cost = 16 for an equijoin to a field that cannot participate as a cross-referenced field
according to FOCUS join rules.

• Cost = 256 for a non-equijoin or an unrestricted Cartesian product.

The Translator then uses these costs to build a join structure for the query. The order of
the tables listed in the FROM clause of the query influences the first two phases of the
join analysis:

1. If there are cost=1 joins from the first table referenced in the FROM clause to the
second, from the second table to the third, and so on, the Translator joins the tables
in the order specified in the query. If not, it goes on to Phase 2.

2. If Phase 1 fails to generate an acceptable join structure, the Translator attempts to
generate a join structure without joining any table TO a table that precedes it in the
FROM clause. Therefore, this phase always makes the first table referenced in the
query the host table. If there is no cost=1 join between two tables, or if using one
would require changing the table order, the Translator abandons Phase 2 and
implements Phase 3.

3. The Translator generates the join structure by using the lowest cost joins first and
then picking from the more expensive ones as necessary. This sorting process may
change the order in which tables are joined. The efficiency of the join that this
procedure generates is somewhat dependent on the relative sizes of the tables being
joined.

If the analysis results in joining TO a table that cannot participate as a cross-referenced
file according to FOCUS rules (because it lacks an index, for example), the Translator
generates code to build an indexed HOLD file and implements the join with this file.
However, the HOLD file does not participate in the analysis of join order.

 TABLEF Optimization

Creating Reports 19-21

TABLEF Optimization
To improve performance, the SQL Translator can be set to generate FOCUS TABLEF
commands instead of TABLE commands. You can take advantage of this optimization
using the SET SQLTOPTTF command (SQL Translator OPTimization TableF). For
related information, see Chapter 15, Improving Report Processing.

Syntax How to Improve Performance Using SQLTOPTTF
SET SQLTOPTTF = {ON|OFF}

where:

ON

Causes TABLEF commands to be generated when possible (for example, if there is
no join or GROUP BY phrase). This is the default.

OFF

Causes TABLE commands to be generated.

Using SQL to Create Reports

19-22 Information Builders

SQL INSERT, UPDATE, and DELETE Commands
The SQL INSERT, UPDATE, and DELETE commands enable SQL users to manipulate
and modify data:

• The INSERT statement is used to introduce new rows into an existing table.

• The DELETE statement removes a row or combination of rows from a table.

• The UPDATE statement permits users to update a row or group of rows in a table.

You can issue an SQL INSERT, UPDATE, or DELETE command against one segment
instance (row) at a time. When you issue one of these commands against a multi-segment
Master File:

• All fields referenced in the command must be on a single path through the file
structure.

• The command must explicitly specify (in the WHERE predicate) every key value
from the root to the target segment instance, and this combination of key values must
uniquely identify one segment instance (row) to be affected by the command.

If you are modifying every field in the row, you can omit the list of field names from
the command.

• The SQL Translator does not support subqueries, such as:

INSERT...INTO...SELECT...FROM...

Although each INSERT, UPDATE, or DELETE command can specify only one row,
referential integrity constraints may produce the following additional modifications to the
data source:

• If you delete a segment instance that has descendant segment instances (children),
the children are automatically deleted.

• If you insert a segment for which parent segments are missing, the parent segments
are automatically created.

Creating Reports A-1

APPENDIX A

Master Files and Diagrams

Topics:

• Creating Sample Data Sources

• The EMPLOYEE Data Source

• The JOBFILE Data Source

• The EDUCFILE Data Source

• The SALES Data Source

• The PROD Data Source

• The CAR Data Source

• The LEDGER Data Source

• The FINANCE Data Source

• The REGION Data Source

• The COURSES Data Source

• The EMPDATA Data Source

• The EXPERSON Data Source

• The TRAINING Data Source

• The PAYHIST File

• The COMASTER File

• The VideoTrk and MOVIES Data
Sources

• The VIDEOTR2 Data Source

• The Gotham Grinds Data Sources

This appendix contains data source descriptions and structure
diagrams for the examples used throughout the documentation.

Master Files and Diagrams

A-2 Information Builders

Creating Sample Data Sources
You can create the sample data sources on your user ID by executing the procedures
specified below. These FOCEXECs are supplied with FOCUS. If they are not available
to you or if they produce error messages, contact your systems administrator.

To create these files, first make sure you have read access to the Master Files.

Data Source Load Procedure Name

EMPLOYEE,
EDUCFILE, and
JOBFILE

Under CMS enter:

EX EMPTEST

Under MVS, enter:

EX EMPTSO

These FOCEXECs also test the data sources by generating
sample reports. If you are using Hot Screen, remember to press
either Enter or the PF3 key after each report. If the
EMPLOYEE, EDUCFILE, and JOBFILE data sources already
exist on your user ID, the FOCEXEC will replace the data
sources with new copies. This FOCEXEC assumes that the
high-level qualifier for the FOCUS data sources will be the
same as the high-level qualifier for the MASTER PDS that was
unloaded from the tape.

SALES
PROD

EX SALES
EX PROD

CAR none (created automatically during installation)

LEDGER
FINANCE
REGION
COURSES
EXPERSON

EX LEDGER
EX FINANCE
EX REGION
EX COURSES
EX EXPERSON

EMPDATA
TRAINING

EX LOADEMP
EX LOADTRAI

PAYHIST none (PAYHIST DATA is a sequential data source and is
allocated during the installation process)

COMASTER none (COMASTER is used for debugging other Master Files)

VideoTrk and
MOVIES

EX LOADVTRK

VIDEOTR2 EX LOADVID2

Gotham Grinds EX LOADGG

 The EMPLOYEE Data Source

Creating Reports A-3

The EMPLOYEE Data Source
The EMPLOYEE data source contains data about a company’s employees. Its segments
are:

• EMPINFO, which contains employee IDs, names, and positions.

• FUNDTRAN, which specifies employees’ direct deposit accounts. This segment is
unique.

• PAYINFO, which contains the employee’s salary history.

• ADDRESS, which contains employees’ home and bank addresses.

• SALINFO, which contains data on employees’ monthly pay.

• DEDUCT, which contains data on monthly pay deductions.

The EMPLOYEE data source also contains cross-referenced segments belonging to the
JOBFILE and EDUCFILE files, described later in this appendix. The segments are:

• JOBSEG (from JOBFILE), which describes the job positions held by each employee.

• SECSEG (from JOBFILE), which lists the skills required by each position.

• SKILLSEG (from JOBFILE), which specifies the security clearance needed for each
job position.

• ATTNDSEG (from EDUCFILE), which lists the dates that employees attended
in-house courses.

• COURSEG (from EDUCFILE), which lists the courses that the employees attended.

Master Files and Diagrams

A-4 Information Builders

The EMPLOYEE Master File

 The EMPLOYEE Data Source

Creating Reports A-5

The EMPLOYEE Structure Diagram
 STRUCTURE OF FOCUS FILE EMPLOYEE ON 09/15/00 AT 10.16.27

 EMPINFO

 01 S1

 *EMP_ID **

 *LAST_NAME **

 *FIRST_NAME **

 *HIRE_DATE **

 * **

 I

 +-----------------+-----------------+-----------------+-----------------+

 I I I I I

 I FUNDTRAN I PAYINFO I ADDRESS I SALINFO I ATTNDSEG

 02 I U 03 I SH1 07 I S1 08 I SH1 10 I KM

 ************** ************** ************** **************

 *BANK_NAME * *DAT_INC ** *TYPE ** *PAY_DATE ** :DATE_ATTEND ::

 *BANK_CODE * *PCT_INC ** *ADDRESS_LN1 ** *GROSS ** :EMP_ID ::K

 *BANK_ACCT * *SALARY ** *ADDRESS_LN2 ** * ** : ::

 *EFFECT_DATE * *JOBCODE ** *ADDRESS_LN3 ** * ** : ::

 * * * ** * ** * ** : ::

 ************** *************** *************** *************** :............::

 ************** ************** ************** :

 I I I EDUCFILE

 I I I

 I I I

 I JOBSEG I DEDUCT I COURSEG

 04 I KU 09 I S1 11 I KLU

 **************

 :JOBCODE :K *DED_CODE ** :COURSE_CODE :

 :JOB_DESC : *DED_AMT ** :COURSE_NAME :

 : : * ** : :

 : : * ** : :

 : : * ** : :

 :............: *************** :............:

 I JOBFILE ************** EDUCFILE

 I

 +-----------------+

 I I

 I SECSEG I SKILLSEG

 05 I KLU 06 I KL

 :SEC_CLEAR : :SKILLS ::

 : : :SKILL_DESC ::

 : : : ::

 : : : ::

 : : : ::

 :............: :............::

 JOBFILE :

 JOBFILE

Master Files and Diagrams

A-6 Information Builders

The JOBFILE Data Source
The JOBFILE data source contains information on a company’s job positions. Its
segments are:

• JOBSEG describes what each position is. The field JOBCODE in this segment is
indexed.

• SKILLSEG lists the skills required by each position.

• SECSEG specifies the security clearance needed, if any. This segment is unique.

The JOBFILE Master File

The JOBFILE Structure Diagram

 The EDUCFILE Data Source

Creating Reports A-7

The EDUCFILE Data Source
The EDUCFILE data source contains data on a company’s in-house courses. Its segments
are:

• COURSEG contains data on each course.

• ATTNDSEG specifies which employees attended the courses. Both fields in the
segment are key fields. The field EMP_ID in this segment is indexed.

The EDUCFILE Master File

The EDUCFILE Structure Diagram

Master Files and Diagrams

A-8 Information Builders

The SALES Data Source
The SALES data source records sales data for a dairy company (or a store chain). Its
segments are:

• STOR_SEG lists the stores buying the products.

• DAT_SEG contains the dates of inventory.

• PRODUCT contains sales data for each product on each date. Note the following
about fields in this segment:

• The PROD_CODE field is indexed.

• The RETURNS and DAMAGED fields have the MISSING=ON attribute.

The SALES Master File

 The SALES Data Source

Creating Reports A-9

The SALES Structure Diagram
SECTION 01

 STRUCTURE OF FOCUS FILE SALES ON 01/05/96 AT 14.50.28

 STOR_SEG
 01 S1

 *STORE_CODE **
 *CITY **
 *AREA **
 * **
 * **

 I
 I
 I
 I DATE_SEG
 02 I SH1

 *DATE **
 * **
 * **
 * **
 * **

 I
 I
 I
 I PRODUCT
 03 I S1

 *PROD_CODE **I
 *UNIT_SOLD **
 *RETAIL_PRICE**
 *DELIVER_AMT **
 * **

Master Files and Diagrams

A-10 Information Builders

The PROD Data Source
The PROD data source lists products sold by a dairy company. It consists of one
segment, PRODUCT. The field PROD_CODE is indexed.

The PROD Master File

The PROD Structure Diagram

 The CAR Data Source

Creating Reports A-11

The CAR Data Source
The CAR data source contains specifications and sales information for rare cars. Its
segments are:

• ORIGIN lists the country that manufactures the car. The field COUNTRY is
indexed.

• COMP contains the car name.

• CARREC contains the car model.

• BODY lists the body type, seats, dealer and retail costs, and units sold.

• SPECS lists car specifications. This segment is unique.

• WARANT lists the type of warranty.

• EQUIP lists standard equipment.

The aliases in the CAR Master File are specified without the ALIAS keyword.

The CAR Master File

Master Files and Diagrams

A-12 Information Builders

The CAR Structure Diagram

 The LEDGER Data Source

Creating Reports A-13

The LEDGER Data Source
The LEDGER data source lists accounting information. It consists of one segment, TOP.
This data source is specified primarily for FML examples. Aliases do not exist for the
fields in this Master File, and the commas act as placeholders.

The LEDGER Master File

 The LEDGER Structure Diagram

Master Files and Diagrams

A-14 Information Builders

The FINANCE Data Source
The FINANCE data source contains financial information for balance sheets. It consists
of one segment, TOP. This data source is specified primarily for FML examples. Aliases
do not exist for the fields in this Master File, and the commas act as placeholders.

The FINANCE Master File

The FINANCE Structure Diagram

 The REGION Data Source

Creating Reports A-15

The REGION Data Source
The REGION data source lists account information for the east and west regions of the
country. It consists of one segment, TOP. This data source is specified primarily for FML
examples. Aliases do not exist for the fields in this Master File, and the commas act as
placeholders.

The REGION Master File

The REGION Structure Diagram

Master Files and Diagrams

A-16 Information Builders

The COURSES Data Source
The COURSES data source describes education courses. It consists of one segment,
CRSESEG1. The field DESCRIPTION has a format of TEXT (TX).

The COURSES Master File

The COURSES Structure Diagram

 The EMPDATA Data Source

Creating Reports A-17

The EMPDATA Data Source
The EMPDATA data source contains organizational data about a company’s employees.
It consists of one segment, EMPDATA. Note the following:

• The PIN field is indexed.

• The AREA field is a temporary one.

The EMPDATA Master File

The EMPDATA Structure Diagram

Master Files and Diagrams

A-18 Information Builders

The EXPERSON Data Source
The EXPERSON data source contains personal data about individual employees. It
consists of one segment, ONESEG.

The EXPERSON Master File

The EXPERSON Structure Diagram

 The TRAINING Data Source

Creating Reports A-19

The TRAINING Data Source
The TRAINING data source contains training course data for employees. It consists of
one segment, TRAINING. Note the following:

• The PIN field is indexed.

• The EXPENSES, GRADE, and LOCATION fields have the MISSING=ON
attribute.

The TRAINING Master File

The TRAINING Structure Diagram

Master Files and Diagrams

A-20 Information Builders

The PAYHIST File
The PAYHIST data source contains the employees’ salary history. It consists of one
segment, PAYSEG. The SUFFIX attribute indicates that the data file is a fixed-format
sequential file.

The PAYHIST Master File

The PAYHIST Structure Diagram

 The COMASTER File

Creating Reports A-21

The COMASTER File
The COMASTER file is used to display the file structure and contents of each segment in
a data source. Since COMASTER is used for debugging other Master Files, a
corresponding FOCEXEC does not exist for the COMASTER file. Its segments are:

• FILEID lists file information.

• RECID lists segment information.

• FIELDID lists field information.

• DEFREC lists a description record.

• PASSREC lists read/write access.

• CRSEG lists cross-reference information for segments.

• ACCSEG lists DBA information.

Master Files and Diagrams

A-22 Information Builders

The COMASTER Master File

 The COMASTER File

Creating Reports A-23

The COMASTER Structure Diagram

Master Files and Diagrams

A-24 Information Builders

The VideoTrk and MOVIES Data Sources
The VideoTrk data source tracks customer, rental, and purchase information for a video
rental business. It can be joined to the MOVIES data source. VideoTrk and MOVIES are
used in examples that illustrate the use of the Maintain facility.

VideoTrk Master File
FILENAME=VIDEOTRK, SUFFIX=FOC
SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=YMD, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=PRODCODE, ALIAS=PCOD, FORMAT=A6, $
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $

MOVIES Master File
FILENAME=MOVIES, SUFFIX=FOC
SEGNAME=MOVINFO, SEGTYPE=S1
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=TITLE, ALIAS=MTL, FORMAT=A39, $
 FIELDNAME=CATEGORY, ALIAS=CLASS, FORMAT=A8, $
 FIELDNAME=DIRECTOR, ALIAS=DIR, FORMAT=A17, $
 FIELDNAME=RATING, ALIAS=RTG, FORMAT=A4, $
 FIELDNAME=RELDATE, ALIAS=RDAT, FORMAT=YMD, $
 FIELDNAME=WHOLESALEPR, ALIAS=WPRC, FORMAT=F6.2, $
 FIELDNAME=LISTPR, ALIAS=LPRC, FORMAT=F6.2, $
 FIELDNAME=COPIES, ALIAS=NOC, FORMAT=I3, $

 The VideoTrk and MOVIES Data Sources

Creating Reports A-25

VideoTrk Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE VIDEOTRK ON 05/21/99 AT 12.25.19

 CUST
 01 S1

*CUSTID **
*LASTNAME **
*FIRSTNAME **
*EXPDATE **
* **

 I
 I
 I
 I TRANSDAT
 02 I SH1

*TRANSDATE **
* **
* **
* **
* **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
************** **************
*PRODCODE ** *MOVIECODE **I
*TRANSCODE ** *COPY **
*QUANTITY ** *RETURNDATE **
*TRANSTOT ** *FEE **
* ** * **
*************** ***************
 ************** **************

Master Files and Diagrams

A-26 Information Builders

MOVIES Structure Diagram
SECTION 01
 STRUCTURE OF FOCUS FILE MOVIES ON 05/21/99 AT 12.26.05

 MOVINFO
 01 S1

*MOVIECODE **I
*TITLE **
*CATEGORY **
*DIRECTOR **
* **

The VIDEOTR2 Data Source
The VIDEOTR2 data source tracks customer, rental, and purchase information for a
video rental business. It is similar to VideoTrk but is a partitioned data source with both
a Master and Access File and with a date-time field.

The VIDEOTR2 Master File
FILENAME=VIDEOTR2, SUFFIX=FOC,
ACCESS=VIDEOACX, $
SEGNAME=CUST, SEGTYPE=S1
 FIELDNAME=CUSTID, ALIAS=CIN, FORMAT=A4, $
 FIELDNAME=LASTNAME, ALIAS=LN, FORMAT=A15, $
 FIELDNAME=FIRSTNAME, ALIAS=FN, FORMAT=A10, $
 FIELDNAME=EXPDATE, ALIAS=EXDAT, FORMAT=YMD, $
 FIELDNAME=PHONE, ALIAS=TEL, FORMAT=A10, $
 FIELDNAME=STREET, ALIAS=STR, FORMAT=A20, $
 FIELDNAME=CITY, ALIAS=CITY, FORMAT=A20, $
 FIELDNAME=STATE, ALIAS=PROV, FORMAT=A4, $
 FIELDNAME=ZIP, ALIAS=POSTAL_CODE, FORMAT=A9, $
 FIELDNAME=EMAIL, ALIAS=EMAIL, FORMAT=A18, $
SEGNAME=TRANSDAT, SEGTYPE=SH1, PARENT=CUST
 FIELDNAME=TRANSDATE, ALIAS=OUTDATE, FORMAT=HYYMDI, $
SEGNAME=SALES, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=TRANSCODE, ALIAS=TCOD, FORMAT=I3, $
 FIELDNAME=QUANTITY, ALIAS=NO, FORMAT=I3S, $
 FIELDNAME=TRANSTOT, ALIAS=TTOT, FORMAT=F7.2S, $
SEGNAME=RENTALS, SEGTYPE=S2, PARENT=TRANSDAT
 FIELDNAME=MOVIECODE, ALIAS=MCOD, FORMAT=A6, INDEX=I, $
 FIELDNAME=COPY, ALIAS=COPY, FORMAT=I2, $
 FIELDNAME=RETURNDATE, ALIAS=INDATE, FORMAT=YMD, $
 FIELDNAME=FEE, ALIAS=FEE, FORMAT=F5.2S, $
 DEFINE DATE/I4 = HPART(TRANSDATE, 'YEAR', 'I4');

 The VIDEOTR2 Data Source

Creating Reports A-27

The VIDEOTR2 Access File
On CMS,

MASTER VIDEOTR2
 DATANAME 'VIDPART1 FOCUS A'
 WHERE DATE EQ 1991;

 DATANAME 'VIDPART2 FOCUS A'
 WHERE DATE FROM 1996 TO 1998;

 DATANAME 'VIDPART3 FOCUS A'
 WHERE DATE FROM 1999 TO 2000;

On MVS, the data set names include your user ID as the high-level qualifier:

MASTER VIDEOTR2
 DATANAME userid.VIDPART1.FOCUS
 WHERE DATE EQ 1991;

 DATANAME userid.VIDPART2.FOCUS
 WHERE DATE FROM 1996 TO 1998;

 DATANAME userid.VIDPART2.FOCUS
 WHERE DATE FROM 1999 TO 2000;

Master Files and Diagrams

A-28 Information Builders

The VIDEOTR2 Structure Diagram
 STRUCTURE OF FOCUS FILE VIDEOTR2 ON 09/27/00 AT 16.45.48

 CUST
 01 S1

 *CUSTID **
 *LASTNAME **
 *FIRSTNAME **
 *EXPDATE **
 * **

 I
 I
 I
 I TRANSDAT
 02 I SH1

 *TRANSDATE **
 * **
 * **
 * **
 * **

 I
 +-----------------+
 I I
 I SALES I RENTALS
 03 I S2 04 I S2
 ************** **************
 *TRANSCODE ** *MOVIECODE **I
 *QUANTITY ** *COPY **
 *TRANSTOT ** *RETURNDATE **
 * ** *FEE **
 * ** * **
 *************** ***************
 ************** **************

 The Gotham Grinds Data Sources

Creating Reports A-29

The Gotham Grinds Data Sources
Gotham Grinds is a group of data sources that contain information about a specialty items
company.

The GGDEMOG Data Source
The GGDEMOG data source contains demographic information about the customers of
Gotham Grinds, a company that sells specialty items like coffee, gourmet snacks, and
gifts. It consists of one segment, DEMOG01.

The GGDEMOG Master File

Master Files and Diagrams

A-30 Information Builders

The GGDEMOG Structure Diagram

The GGORDER Data Source
The GGORDER data source contains order information for Gotham Grinds. It consists of
two segments, ORDER01 and ORDER02, respectively.

The GGORDER Master File

 The Gotham Grinds Data Sources

Creating Reports A-31

The GGORDER Structure Diagram

The GGPRODS Data Source
The GGPRODS data source contains product information for Gotham Grinds. It consists
of one segment, PRODS01.

The GGPRODS Master File

Master Files and Diagrams

A-32 Information Builders

The GGPRODS Structure Diagram

The GGSALES Data Source
The GGSALES data source contains sales information for Gotham Grinds. It consists of
one segment, SALES01.

The GGSALES Master File

 The Gotham Grinds Data Sources

Creating Reports A-33

The GGSALES Structure Diagram

The GGSTORES Data Source
The GGSTORES data source contains information for each of Gotham Grinds’ 12 stores
in the United States. It consists of one segment, STORES01.

The GGSTORES Master File

Master Files and Diagrams

A-34 Information Builders

The GGSTORES Structure Diagram

Creating Reports B-1

APPENDIX B

Error Messages

Topics:

• Accessing Error Files

• Displaying Messages Online

If you need to see the text or explanation for any error message,
you can display it online in your FOCUS session or find it in a
standard FOCUS ERRORS file. All of the FOCUS error
messages are stored in eight system ERRORS files.

Error Messages

B-2 Information Builders

Accessing Error Files
For CMS, the ERRORS files are:

• FOT004 ERRORS

• FOG004 ERRORS

• FOM004 ERRORS

• FOS004 ERRORS

• FOA004 ERRORS

• FSQLXLT ERRORS

• FOCSTY ERRORS

• FOB004 ERRORS

For MVS, these files are the following members in the ERRORS PDS:

• FOT004

• FOG004

• FOM004

• FOS004

• FOA004

• FSQLXLT

• FOCSTY

• FOB004

 Displaying Messages Online

Creating Reports B-3

Displaying Messages Online
To display a message online, issue the following query command at the FOCUS
command level

? n

where n is the message number.

The message number and text will display along with a detailed explanation of the
message (if one exists). For example, issuing the following command

? 210

displays the following:

(FOC210) THE DATA VALUE HAS A FORMAT ERROR:

An alphabetic character has been found where all numerical digits are
required.

Creating Reports C-1

APPENDIX C

Syntax Summary

Topics:

• TABLE Syntax Summary

• TABLEF Syntax Summary

• MATCH Syntax Summary

• FOR Syntax Summary

This appendix summarizes FOCUS reporting commands and
options.

Syntax Summary

C-2 Information Builders

TABLE Syntax Summary
The syntax of a TABLE request is:

DEFINE FILE filename [CLEAR|ADD] [SAVE|RETURN]
tempfield[/format] [WITH realfield] = expression;
tempfield[/format] REDEFINES qualifier.fieldname=expression;

.

.

.

END
TABLE FILE filename
HEADING [CENTER]

"text"
{display command} [SEG.]field [/R|/L|/C] [/format]
{display command} [prefixop.][field] [/R|/L|/C] [/format]
 [NOPRINT|AS 'title1,...,title5'] [AND|OVER] [obj2...obj1024]
 [WITHIN field] [IN n]
COMPUTE field[/format]=expression;[AS 'title,...,title5'] [IN n]

[AND] ROW-TOTAL [/R|/L|/C] [/format][AS 'name']
[AND] COLUMN-TOTAL [/R|/L|/C] [AS 'name']
ACROSS [HIGHEST] sortfield [IN-GROUPS-OF qty] ACROSS-TOTAL [AS 'name']

 [COLUMNS col1 AND col2 ...] [NOPRINT|AS'title1,...,title5']
BY [HIGHEST|LOWEST{n}]TOTAL [prefix_operator]{field|code_value}
RANKED BY {TOP|HIGHEST|LOWEST} [n]sortfield

 [IN-GROUPS-OF qty [TILES [TOP m]] [AS 'heading']]
 [NOPRINT|AS'title1,...,title5']
ON sortfield {SUBTOTAL|SUB-TOTAL|SUMMARIZE|RECOMPUTE} [MULTILINES]

 [AS 'name'] [field1, field2,...] [WHEN expression;...]
ON sortfield {RECAP|COMPUTE} field[/format]=expression; [WHEN expression;...]
ON sfld RECAP fld1[/fmt]=FORECAST(fld2, intvl, npredct, '{MOVAVE|EXPAVE}',npnt);

ON sfld RECAP fld1[/fmt]=FORECAST(fld2, intvl, npredct, 'REGRESS');
WHERE [TOTAL] expression
WHERE RECORDLIMIT EQ n

WHERE READLIMIT EQ n
IF [TOTAL] field relation value [OR value...]
ON TABLE SET parameter value

ON TABLE HOLD [VIA program][AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE PCHOLD [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE SAVE [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE SAVB [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE NOTOTAL
ON TABLE COLUMN-TOTAL [/R|/L|/C] [AS 'name'] fieldname

ON TABLE ROW-TOTAL [/R|/L|/C] [format] [AS 'name'] fieldname
FOOTING [CENTER] [BOTTOM]
"text"

MORE
FILE file2
 [IF field relation value [OR value...]|WHERE expression]

{END|RUN|QUIT}

 TABLEF Syntax Summary

Creating Reports C-3

TABLEF Syntax Summary
The syntax of a TABLEF request is:

TABLEF FILE filename
HEADING [CENTER]
"text"

{display command} [SEG.]field [/R|/L|/C] [/format]
{display command} [prefixop.][field] [/R|/L|/C] [/format]
 [NOPRINT|AS 'title1,...,title5'] [AND|OVER] [obj2...obj495]
 [IN n]

COMPUTE field [/format]=expression; [AS 'title1,...title5']
[AND] ROW-TOTAL [AND] COLUMN-TOTAL

BY [HIGHEST] keyfieldn [NOPRINT]

ON keyfield option1 [AND] option2. . . .

WHERE [TOTAL] expression

IF [TOTAL] field relation value [OR value. . .]

ON TABLE SET parameter value

ON TABLE HOLD [VIA program] [AS name] [FORMAT format] [MISSING {ON|OFF}]

ON TABLE PCHOLD [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE SAVE [AS name] [FORMAT format] [MISSING {ON|OFF}]
ON TABLE SAVB [AS name] [FORMAT format] [MISSING {ON|OFF}]

ON TABLE NOTOTAL
ON TABLE COLUMN-TOTAL fieldname
ON TABLE ROW-TOTAL fieldname

 FOOTING [CENTER] [BOTTOM]
 "text"

{END|RUN|QUIT}

Note:

• Prefix operators for TABLEF can be: AVE., ASQ., MAX., MIN., PCT., RPCT.,
PCT.CNT., FST., LST., CNT., SUM., or TOT. TABLEF requests cannot use prefix
operators PCT.CNT., RPCT., and TOT.

Syntax Summary

C-4 Information Builders

MATCH Syntax Summary
The syntax of a MATCH request is:

MATCH FILE filename (the OLD file)

report request

BY field1 [AS sortfield]

MORE
FILE file3
subrequest

RUN
.
.
.

FILE filename2 (the NEW file)

report request

BY field1 [AS sortfield1]
.
.
.

[AFTER MATCH HOLD [AS filename] [FORMAT FOCUS] {matchtype}]

MORE
FILE file4
subrequest

END

where:

matchtype

Can be any of the following:
OLD
NEW
OLD-NOT-NEW
NEW-NOT-OLD
OLD-AND-NEW
OLD-OR-NEW
OLD-NOR-NEW

 FOR Syntax Summary

Creating Reports C-5

FOR Syntax Summary
The formal syntax of the FOR statement is

FOR fieldname [NOPRINT]
row
[OVER row]
.
.
.
.
END

where:

row

Can be any of the following:

tag [OR tag...][options]
[fieldname]
DATA n,[n,....] $
DATA PICKUP [FROM filename] tag [LABEL label] [AS 'text']
RECAP name[/format]=expression;
BAR [AS 'character'] [OVER]
"text"
PAGE-BREAK [OVER]

tag

Can be any of the following:

value [OR value...]
value TO value

option

Can be any of the following:

AS 'text'
NOPRINT

[LABEL label]

WHEN EXISTS
NOPRINT

[POST [TO filename]]

Creating Reports D-1

APPENDIX D

Writing User-Coded Programs to Create HOLD
Files

Topic:
• Arguments Used in Calls to Programs

That Create HOLD Files

HOLD files can be created by a user-coded program. This
enables you to use the FOCUS report writer to obtain records
from any FOCUS-readable data source and write the records to
another data source for use by an external program. This feature
is most useful when an external program requires an internal
format or arrangement of data other than those already provided
with the HOLD command formats (for example, FORMAT
FOCUS, LOTUS, SQL).

FOCUS collects records from the report request and passes
them, one at a time, to the user program.

Writing User-Coded Programs to Create HOLD Files

D-2 Information Builders

Arguments Used in Calls to Programs That Create
HOLD Files

The program is called with the following arguments:

• RECNO is the record number in the HOLD file. The format is integer.

• LEN is the length of this record in the HOLD file. The format is integer.

• DDNAME is the name given in the HOLD AS phrase. The format is A8.

• RECORD is the record of data in the HOLD file. The format is Annnn (the
maximum record length is 4096).

• RETCOD is the return code. The format is integer. A RETCOD of 0 signifies that
the request has processed normally. If RETCOD is non-zero, FOCUS will terminate
the report and display:
(FOC350) ERROR WRITING OUTPUT FILE:

The error message will include the non-zero value of RETCOD.

• ACVT is a one-word integer; reserved.

In MVS, the subroutine must be allocated to ddname FOCLIB. Compile and link the
subroutine as a separate module with AMODE=31,RMODE=24.

In CMS, the program should be compiled, and the TEXT deck available at run time.

 Arguments Used in Calls to Programs That Create HOLD Files

Creating Reports D-3

Example Sample User-Coded Program That Creates a HOLD File
This simple COBOL program shows the use of these parameters. It would execute when
a report request includes the phrase ON TABLE HOLD VIA EXAMPLE, or when
HOLD VIA EXAMPLE is issued from Hot Screen or after a report is displayed:
IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
INSTALLATION. IBI.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

01 RECNO PIC S9(9) COMP.
01 LEN PIC S9(9) COMP.
01 DDNAME PIC X(8).
01 REC PIC X(4096).
01 RETCOD PIC S9(9) COMP.
01 ACVT PIC S9(9) COMP.

PROCEDURE DIVISION USING RECNO, LEN, DDNAME, REC, RETCOD, ACVT.

PERFORM SHOWPARMS.
GOBACK.

SHOWPARMS.
 DISPLAY " "
 DISPLAY " EXAMPLE COBOL DISPLAY: "
 DISPLAY " RECORD NUMBER " RECNO.
 DISPLAY " LENGTH OF RECORD IS " LEN.
 DISPLAY " DDNAME IS " DDNAME.
 DISPLAY " RECORD IS " REC.
 DISPLAY " RETURN CODE IS " RETCOD.
 DISPLAY " ACVT IS " ACVT.
 MOVE SPACES TO REC.

Creating Reports E-1

APPENDIX E

Character Charts

Topics:

• Letters

• Numbers

• Punctuation

• Symbols

• Accent Marks and Accented Letters

This appendix contains charts listing the printable EBCDIC
character set. EBCDIC is a code that enables IBM S/390
computers to store 256 characters as integers from 0 to 255.
The character set in this appendix is based upon the display of
an IBM 3270 terminal with the Hot Screen facility deactivated
(SET SCREEN=OFF). Use of a 3270 emulator may give
different results depending upon the code page used. The
printable character sets are organized by topic:

• Letters: uppercase and lowercase.

• Numbers: integer.

• Punctuation: space/blank, common punctuation, brackets,
and braces.

• Symbols: common, financial, mathematical, and rare.

• International: accent marks and accented letters.

In the charts, the printable characters appear on the left; their
equivalent integers in decimal on the right.

Character Charts

E-2 Information Builders

Letters
Uppercase Letters Lowercase Letters Uppercase Letters Lowercase

Letters

A 193 a 129 N 213 n 149

B 194 b 130 O 214 o 150

C 195 c 131 P 215 p 151

D 196 d 132 Q 216 q 152

E 197 e 133 R 217 r 153

F 198 f 134 S 226 s 162

G 199 g 135 T 227 t 163

H 200 h 136 U 228 u 164

I 201 i 137 V 229 v 165

J 209 j 145 W 230 w 166

K 210 k 146 X 231 x 167

L 211 l 147 Y 232 y 168

M 212 m 148 Z 233 z 169

Numbers
Numbers Numbers

0 240 5 245

1 241 6 246

2 242 7 247

3 243 8 248

4 244 9 249

 Punctuation

Creating Reports E-3

Punctuation
Punctuation Punctuation

space 64 ' 125

. 75 “ 127

! 90 * 92

? 111 / 97

, 107 (77

; 94) 93

: 122 [65

- 96] 66

_ 109 { 192

 } 208

Symbols
Commonly Used
Symbols

Financial
Symbols

Mathematical
Symbols

Rarely Used Symbols

@ 124 $ 91 + 78 ¤ 70

123 ¢ 74 - 96 ß 71

% 108 £ 67 * 92 § 72

& 80 ¥ 68 / 97 ¦ 106

* 92 € 80 = 126 \ 224

° 81 @ 124 Æ 250

 ¬ 95 æ 225

 | 79 Ø 251

 > 110 ø 234

 < 76

Character Charts

E-4 Information Builders

Accent Marks and Accented Letters
Accent Marks Accent Marks

¯ 73 ´ 85
∨ 82 ´ 86
∧ 83 ` 121

¨ 84 ~ 161

Accented
Letters

Accented
Letters

Accented
Letters

Accented
Letters

Accented
Letters

Á 203 À 158 Â 188 Ä 183 Ã 172

á 143 à 103 â 138 ä 117 ã 100

É 204 È 159 Ê 189 Ë 184 Ñ 220

é 144 è 104 ê 139 ë 118 ñ 157

Í 205 Ì 160 Î 190 Ï 185 Õ 173

í 154 ì 89 î 140 ï 119 õ 101

Ó 218 Ò 170 Ô 191 Ö 186 Å 252

ó 155 ò 98 ô 141 ö 120 å 235

Ú 219 Ù 171 Û 202 Ü 187 Ç 253

ú 156 ù 99 û 142 ü 128 ç 236

 ÿ 102

Creating Reports I-1

Index
Symbols
- subtraction operator, 8-4 to 8-5

$ masking character, 5-20 to 5-22

$* masking character, 5-20, 5-22 to 5-23

% masking character, 5-20, 5-22

* multiplication operator, 8-4 to 8-5

** exponentiation operator, 8-4 to 8-5

/ division operator, 8-4 to 8-5

? FILTER command, 5-32, 5-36

? JOIN command, 13-33

? STAT command, 4-34

? STYLE command, 10-17

?F command, 1-16

?FF command, 1-17

_ masking character, 5-20

+ addition operator, 8-4 to 8-5

A
accent marks, E-4

ACCEPT attribute, 11-19 to 11-20

Access Files, A-27
VIDEOTR2, A-27

accessing help, 1-4

ACROSS COLUMNS AND phrase, 4-12, 4-14 to
4-15

ACROSS phrase, 1-7, 2-3, 2-19 to 2-20, 4-1, 4-5 to
4-7, 10-34

COMPUTE command and, 6-15
GRAPH, 18-14 to 18-15

ACROSSCOLUMN, 10-34
WHEN, 10-51

ACROSSTITLE, 10-25

ACROSS-TOTAL phrase, 4-7 to 4-8

ACROSSVALUE, 10-25

ADD command, 2-9

adding columns in financial reports, 16-27

adding page breaks, 16-30

adding underlines to columns, 16-30

adding virtual fields, 6-7 to 6-8

addition operator, 8-4 to 8-5

aggregate values, 5-10
selecting records and, 5-10

aggregation, 4-35, 9-50
external sorting and, 4-35 to 4-37

aliases, 1-13 to 1-14, 19-10
displaying, 1-17
SQL Translator and, 19-10

ALL command, 12-17
missing values and, 12-17 to 12-18

ALL parameter, 5-8, 13-6
JOIN command and, 13-4, 13-6
MULTIPATH parameter and, 5-8 to 5-9

ALL prefix, 12-16
missing values and, 12-16

ALLOCATE command, 11-2

ALPHA format, 11-27

alphanumeric fields, 5-19
testing character strings, 5-20 to 5-25

alternate file views, 6-4, 15-2 to 15-3

alternate indexes, 5-39
selecting records and, 5-39

alternate views, 6-4

AND operator, 5-12, 8-14

Index

I-2 Information Builders

APT (Automatic Passthru), 19-6

arithmetic expressions, 8-4
creating, 8-4

arithmetic operators, 8-4 to 8-5

AS phrase, 9-15 to 9-16, 10-25, 11-3, 11-15
in extract files, 3-17

ascending sort order, 4-10 to 4-11

ASNAMES command, 11-14 to 11-17

ASQ prefix operator, 2-17

assigning row titles, 16-7

AUTOINDEX parameter, 15-4 to 15-5

Automatic Passthru (APT), 19-6

AUTOPATH parameter, 15-4

AUTOTABLEF parameter, 2-21, 2-23

AUTOTICK parameter, 18-40, 18-42 to 18-43,
18-60

AVE prefix operator, 2-17

B
BACK command in Hot Screen, 3-7

bar charts, 18-29

BAR command, 16-30

BARNUMB parameter, 18-31, 18-45, 18-60

BARSPACE parameter, 18-29, 18-31, 18-60

BARWIDTH parameter, 18-29, 18-31, 18-60

base dates, 8-8 to 8-9

BINARY format, 11-27

BINS parameter, 4-34

blank lines, 9-8
inserting, 9-8 to 9-9

blanks, 12-11
testing for, 12-11

Boolean expressions, 8-14 to 8-15

Boolean operators, 8-14

BOTTOM command in Hot Screen, 3-7

BOTTOMMARGIN parameter, 10-14

BSTACK parameter, 18-29, 18-60

BY field in Hot Screen, 3-12

BY phrase, 1-7, 2-3, 2-10 to 2-11, 2-19, 4-1, 4-3 to
4-4, 10-26, 16-10

GRAPH, 18-14 to 18-15
WITHIN phrase and, 2-29

BY ROWS OVER phrase, 4-12 to 4-14

BY TOTAL phrase, 4-25 to 4-26

BYPANEL parameter, 3-12

BYSCROLL parameter, 3-9

byte precision, 2-13
expanding, 2-13 to 2-14

C
calculated values, 6-2, 6-11 to 6-13, 7-12

in column and row totals, 7-2
screening on, 6-16
sorting by, 4-25 to 4-27, 6-15
subtotals and, 7-12, 7-14 to 7-15

calculating column and row totals, 7-2 to 7-3

calculating dates, 8-9

calculating forecast values, 6-17

calculating trend values, 6-17

calculations, 16-22
subroutines and, 16-22 to 16-23

calculations for DEFINE, 6-10

calculations on field values, 2-15
average (AVE), 2-17
average sum of squares (ASQ), 2-17 to 2-18
column percent (PCT), 2-19
counting, 2-27
direct percent of counts (PCT.CNT), 2-21
maximum value (MAX), 2-18
minimum value (MIN), 2-18

 Index

Creating Reports I-3

calculations on field values (continued)
row percent (RPCT), 2-19 to 2-20
sum numeric (SUM), 2-27
total (TOT), 2-27
WITHIN phrase and, 2-29 to 2-30

CAR data source, A-11

Cartesian product, 14-25 to 14-26, 19-13
SQL Translator and, 19-13

CA-TELLAGRAF Interface, 18-53

CDN (Continental Decimal Notation), 19-13
SQL Translator and, 19-13

cells, 16-20
identifying, 16-20 to 16-21

character expressions, 8-3, 8-12

character strings, 3-10, 8-13
concatenating, 8-13
locating, 3-10
testing, 5-19 to 5-25

characters, E-1
accent marks, E-4
accented letters, E-4
letters, E-2
numbers, E-2
printable equivalents, E-1
punctuation, E-3
symbols, E-3

CHECK FILE command, 13-32
join structures and, 13-31 to 13-32

CHECK STYLE, 10-19

class intervals, 18-42

clearing conditional join structures, 13-34 to 13-35

clearing join structures, 13-34

clearing virtual fields, 6-4, 6-6

CNT prefix operator, 2-27

COLOR, 10-19

COLUMN, 10-34

column addresses, 16-18 to 16-19

column numbers, 16-16

column position, 6-14

column spacing, 9-25

column titles, 9-15
creating, 9-15 to 9-16
customizing, 9-17
justifiying, 9-26 to 9-27

column totals, 1-10, 4-7 to 4-8, 7-2 to 7-3
calculated values and, 7-2, 7-6
calculating, 7-2 to 7-4
renaming, 7-2, 7-5

column values, 16-20

columns, 1-7
adding, 16-27
calculating percent, 2-19
calculating totals, 7-2 to 7-4
calculating values, 6-11 to 6-13
compressing, 9-22 to 9-24
formatting, 1-19 to 1-20, 1-24
identifying, 16-16 to 16-20
positioning, 9-18 to 9-21
ranking, 4-27
sorting by, 4-5 to 4-7
summing and sorting, 4-25 to 4-26

COLUMNS parameter, 3-14

COLUMN-TOTAL phrase, 7-2 to 7-4

COM format, 11-29

COMASTER data source, A-21

combining records, 16-8 to 16-9

COMMA format, 11-28

comma-delimited files, 13-3

commands, 3-10
canceling in Hot Screen, 3-10
FOLD-LINE, 9-22
MULTILINES, 9-36 to 9-37
NOPRINT, 9-11
NOSPLIT, 9-5 to 9-6
OVER, 9-23
PAGE-BREAK, 9-2
REPAGE, 9-2

Index

I-4 Information Builders

commands (continued)
repeating in Hot Screen, 3-10
SKIP-LINE, 9-8
SUBFOOT, 9-36 to 9-37
SUP-PRINT, 9-11
UNDER-LINE, 9-10

common high-order sort fields, 14-9, 14-11, 14-22,
14-24

comparing characters with a mask, 5-20 to 5-23

compiling calculations, 6-10

complex expressions, 8-1

compound expressions, 5-12

COMPUTE command, 2-10, 6-2, 6-11 to 6-13, 7-16
ACROSS phrase and, 6-15
expressions and, 8-2
referencing fields, 6-14
screening and, 6-16
subroutines and, 6-32

COMT format, 11-30

concatenating character strings, 8-13

concatenating data sources, 14-1, 14-14 to 14-16,
14-19

field names and, 14-17 to 14-18

concatenation, 18-17
MORE phrase, 18-17
universal, 18-17

concatenation operator, 8-13

conditional expressions, 8-3, 8-16 to 8-18

conditional formatting, 9-46 to 9-50

conditional join structures, 13-2 to 13-3, 13-12,
13-23 to 13-24, 13-31

clearing, 13-34 to 13-35

conditional operators, 5-13, 5-16 to 5-17

conditional styling, 10-49

connected point plot graphs, 18-22 to 18-23

CONTAINS operator, 5-19 to 5-20

contiguous columns, 16-17

Continental Decimal Notation (CDN), 19-13
SQL Translator and, 19-13

conversions, E-1
code page, E-1
printable equivalents, E-1

COUNT * command, 2-12

COUNT command, 2-10 to 2-13, 4-2
unique segments, 2-12

count of occurrences, 2-27

COUNTWIDTH command, 2-10, 2-13

COURSES data source, A-16

CREATE TABLE command, 19-11

CREATE VIEW command, 19-12

creating financial reports, 16-3, 16-5 to 16-6, 16-8
to 16-11, 16-24

adding columns, 16-27
external files and, 16-10
formatting, 16-30
from multiple records, 16-8
identifying a range of values, 16-9
identifying cells, 16-20 to 16-21
identifying columns, 16-16 to 16-20
identifying rows, 16-13 to 16-15
inserting text, 16-25 to 16-26
inter-row calculations and, 16-12 to 16-13
masking and, 16-9
recursive models and, 16-28 to 16-29
repeating rows, 16-15
subroutines and, 16-22 to 16-23

creating HOLD files, D-1
from financial reports, 16-35 to 16-36

creating reports, 1-1 to 1-3

creating rows, 16-5 to 16-6
from multiple records, 16-8

creating temporary fields, 1-12, 6-1, 6-4
with COMPUTE, 6-2, 6-11 to 6-13
with DEFINE, 6-2 to 6-4, 6-6 to 6-7
with DEFINE and ADD, 6-7 to 6-8
with DEFINE FUNCTION, 6-33

creating virtual fields, 6-1, 6-4, 6-6 to 6-7, 6-9

 Index

Creating Reports I-5

cross-century dates, 8-10

cross-referenced fields, 13-15
data formats for, 13-21

cross-referenced files, 13-4, 13-12

custom reports, 10-2
free-form reports, 17-6

customizing reports, 1-17 to 1-18, 9-1, 9-22, 9-27 to
9-28

with SET parameters, 9-27

D
DATA, 10-24

data descriptions, 1-2

data extraction, 11-3, 11-7

data fields, 5-20
testing, 5-20 to 5-21

data formats for join structures, 13-21

data retrieval, 5-5 to 5-6, 15-1 to 15-6, 16-34
TABLEF command and, 15-6

data source types, 1-2

data sources, 1-4
concatenating, 14-14 to 14-16
exporting from, 11-3, 11-7
joining, 13-1, 13-3 to 13-4, 13-12, 13-22
merging, 14-1 to 14-7, 14-9, 14-11 to 14-12,

14-19 to 14-20, 14-22, 14-24
missing values, 12-1
multi-path, 2-6
rotating, 15-2

data structures, 13-1, 15-3

data type conversions, 13-22

data types, 13-22
converting for join structures, 13-22

date components, 8-11
extracting, 8-11

date constants, 8-7, 8-10

date expressions, 8-3, 8-7, 8-10
combining fields, 8-11

date fields, 8-7
extracting components from, 8-11

date formats, 8-8 to 8-9, 19-15 to 19-16
calculations in, 8-10
SQL Translator and, 19-15 to 19-16

date values, 8-8
format for, 8-8 to 8-9

dates, 8-9
extracting components, 8-11
in graphs, 18-47
performing calculations on, 8-9

date-time expressions, 8-7

date-time values, 8-7, 19-17 to 19-19
SQL Translator and, 19-17 to 19-19

DB2 format, 11-30

DBAFILE attribute, 13-4
join structures and, 13-4

deferred graphics output, 18-51

DEFINE attribute, 8-2
expressions and, 8-2
GRAPH, 18-20

DEFINE command, 6-2 to 6-4, 6-7
expressions and, 8-2
join structures and, 6-11, 13-17, 13-19 to 13-20,

13-26 to 13-27, 13-29
missing values and, 12-4 to 12-8
speed of calculations for, 6-10
subroutines and, 6-32

DEFINE FILE RETURN command, 6-10 to 6-11,
13-29

DEFINE FILE SAVE command, 6-10 to 6-11,
13-29

DEFINE FUNCTION command, 6-33

Index

I-6 Information Builders

DEFINE functions, 6-33
calling, 6-33
deleting, 6-33, 6-36
limitations, 6-33 to 6-34
querying, 6-33, 6-35

defining custom groups, 4-17 to 4-18

DELETE command, 19-22

deleting virtual fields, 6-4, 6-6

descending sort order, 4-10, 4-12

DEVICE parameter, 18-10, 18-60

DFSORT sorting product, 4-33
CMS requirements, 4-33
MVS requirements, 4-33

Dialect Translation, 19-2

Dialogue Manager, 8-2, 16-2

DIF format, 11-31

direct percent, 2-21

display commands, 1-6 to 1-7, 2-1 to 2-2, 4-2
ADD, 2-9
COMPUTE command and, 6-15
COUNT, 2-10, 4-2
COUNT *, 2-12
LIST, 2-1, 2-3, 4-2
LIST *, 2-5
MATCH FILE command and, 14-12
multiple, 4-31, 4-32
PRINT, 2-1, 2-3, 4-2
PRINT *, 2-5
SUM, 2-1, 2-9 to 2-10, 4-2
WRITE, 2-9

display fields, 1-20, 2-15
limitations, 1-13
prefix operators and, 2-15

displaying data, 1-6 to 1-7

displaying field names, 1-16 to 1-17

displaying grand totals, 7-6 to 7-7

displaying graphs, 18-7

displaying join structures, 13-31 to 13-33

displaying reports, 3-1 to 3-2, 3-11, 3-17, 9-52

displaying subtotals, 7-6 to 7-12

distinct prefix operators, 2-21 to 2-22
restrictions, 2-21, 2-23

division operator, 8-4 to 8-5

DOWN command in Hot Screen, 3-7

DROP VIEW command, 19-12
SQL Translator and, 19-13

DST prefix operator, 2-21 to 2-22
restrictions, 2-21, 2-23

dynamic reformatting, 1-21 to 1-22

E
EBCDIC, E-1

code page, E-1
printable characters, E-1

EDUCFILE data source, A-7

embedded quotation marks, 8-12 to 8-13

EMPDATA data source, A-17

EMPLOYEE data source, A-3

empty reports, 3-6, 9-52

EMPTYREPORT parameter, 3-6, 9-52

EMR. See FML (Financial Modeling Language)

END command, 1-5, 18-12
in GRAPH request, 18-12

ending a report request, 1-5

EQ operator, 5-19, 8-14

equijoins, 13-2 to 13-3, 13-13

error files, B-1
CMS, B-2
MVS, B-2

error messages, 1-4, B-1
displaying, 4-39, B-3

escape characters, 5-24 to 5-25

 Index

Creating Reports I-7

estimating number of records, 4-39

ESTRECORDS parameter, 4-38 to 4-39

EXCEL format, 11-31

EXCEPT operator, 19-15

EXCLUDES operator, 5-25 to 5-26

existing data, 5-19
testing for, 5-19, 12-10

EXPAVE method, 6-17 to 6-18, 6-21, 6-25 to 6-26

EXPERSON data source, A-18

exponential moving average, 6-25 to 6-26

exponentiation operator, 8-4 to 8-5

expression types, 8-3
Boolean, 8-14
conditional, 8-16
date-time, 8-7
logical, 8-14
relational, 8-14 to 8-15

expressions, 8-1 to 8-2, 19-15
combining, 5-12
COMPUTE command and, 8-2
DEFINE attribute and, 8-2
DEFINE command and, 8-2
field formats and, 8-3 to 8-4
IF phrase and, 8-2
RECAP command and, 8-2
SQL Translator and, 19-15
WHEN phrase and, 8-2
WHERE phrase and, 8-2

EXTAGGR parameter, 4-35

external sorting, 4-33 to 4-34
aggregation and, 4-35 to 4-37
displaying error messages, 4-39
HOLD files and, 4-37 to 4-38
National Language Support (NLS) and, 4-33
requirements, 4-33
verifying, 4-34

EXTHOLD parameter, 4-37 to 4-38

extract files, 11-2
displaying, 18-53
missing values and, 12-12
naming, 11-2

EXTRACT function, 19-19

EXTSORT parameter, 4-33 to 4-34

F
field formats, 3-11, 8-8

expressions and, 8-3 to 8-4
internal storage and, 8-9
redefining, 3-11

field names, 1-13, 19-14
aliases, 1-13 to 1-14
controlling, 11-14 to 11-17
displaying, 1-16 to 1-17
long, 1-14 to 1-15
qualified, 1-13 to 1-15
SQL Translator and, 19-14
truncated, 1-13 to 1-14

field padding, 11-42 to 11-43

field values, 2-1, 9-41
calculating, 6-11 to 6-13
computing the average, 2-17
counting, 2-10
displaying, 2-1, 2-3 to 2-5
embedding, 9-41
summing, 4-2
WITHIN phrase and, 2-29

field-based reformatting, 1-21 to 1-23

FIELDNAME command, 1-15

FIELDNAME SET parameter, 6-4

fields, 1-13
formatting, 8-10
in free-form reports, 17-7
in report requests, 1-13 to 1-14
joining, 13-22
repeating in join structures, 13-7
suppressing display, 9-11 to 9-13
temporary, 1-12, 6-1

FILE command, 1-4

Index

I-8 Information Builders

FILEDEF command, 11-2

FILTER parameter, 5-32, 5-35

FILTER query command, 5-32, 5-36

filtering, 5-2

filters, 5-32, 5-35 to 5-36
defining, 5-32 to 5-34
join structures and, 5-38
virtual fields and, 5-32, 5-34

FINANCE data source, A-14

Financial Modeling Language (FML), 16-1 to 16-3
Dialog Manager and, 16-2
saving report results, 16-32

Financial Reporting Language (FRL). See Financial
Modeling Language (FML)

financial reports, 16-1 to 16-2
creating, 16-3, 16-5 to 16-6, 16-8 to 16-29
formatting, 16-30
HOLD files and, 16-35 to 16-36
posting data, 16-33
saving intermediate results, 16-32
suppressing rows, 16-31 to 16-32

financial symbols, E-3
printable characters, E-3

fixed axis scales (fixed limits), 18-41, 18-43, 18-50

FIXRETRIEVE parameter, 11-21 to 11-22

FML (Financial Modeling Language), 16-1 to 16-3
Dialog Manager and, 16-2
saving report results, 16-32

FOCFIELDNAME amper variable, 1-15

FOCSTYLE files, 10-7, 10-17

FOCUS data sources, 5-2 to 5-3, 11-9
creating, 11-9, 11-12 to 11-13
selecting records and, 5-3

FOCUS file structure, 11-9, 11-11

FOCUS format, 11-32

FOLD-LINE command, 9-16, 9-22 to 9-23

FONT, 10-19

footers, 18-18
embedding field values, 18-20
in free-form reports, 17-6

footings, 9-29, 10-28
creating, 18-18
inserting data in, 9-41, 9-44
TABLE, 10-28

FOR command, C-5

FOR phrase, 2-21, 2-23, 4-12 to 4-13, 4-16 to 4-18,
16-3, 16-10

FORECAST, 6-17 to 6-18, 6-20, 6-29 to 6-32

forecast values, 6-17

formats, 3-17
extracting files, 3-17

formatted graphs, 18-51
saving, 18-51

formatting financial reports, 16-30
WebFOCUS StyleSheets and, 16-30

formatting graphs, 18-7

formatting report columns, 1-19 to 1-20, 1-24

formatting reports, 9-1 to 9-2, 9-8, 9-11, 9-17 to
9-18, 9-22 to 9-23, 9-25 to 9-28, 9-30, 9-33, 9-35
to 9-36, 9-39, 9-46, 19-6

SQL Translator and, 19-6

FORWARD command in Hot Screen, 3-7

free-form reports, 9-45, 17-1 to 17-2
designing, 17-6
example, 17-2
fields, 17-7
footers, 17-6
formatting, 17-8
graphics, 17-7
headers, 17-6
prefix operators, 17-7
selecting records, 17-8
sorting, 17-8
text, 17-6

FROM ... TO operator, 5-16 to 5-17

FST prefix operator, 2-24 to 2-25

 Index

Creating Reports I-9

function keys in Hot Screen, 3-6, 3-14, 3-17

functions, 8-1

FUSION format, 11-32

G
GCOLOR parameter, 18-60

GDDM graphics, 18-55

GE operator, 5-17 to 5-18, 8-14

GGDEMOG data source, A-29

GGORDER data source, A-30

GGPRODS data source, A-31

GGSALES data source, A-32

GGSTORES data source, A-33

GMISSING parameter, 18-48, 18-60

GMISSVAL parameter, 18-48, 18-60

Gotham Grinds data sources, A-29
GGDEMOG, A-29
GGORDER, A-30
GGPRODS, A-31
GGSALES, A-32
GGSTORES, A-33

GPROMPT parameter, 18-7, 18-60

grand totals, 1-10, 7-6
displaying, 7-6 to 7-7
suppressing, 7-19 to 7-20

GRANDTOTAL, 10-26

GRAPH command, 18-2, 18-12, 18-57

graph forms, 18-21
bar charts, 18-29
connected point plots, 18-22, 18-23
histograms, 18-26
pie charts, 18-33
scatter diagrams, 18-35

graph headings, 18-18

GRAPH parameters, 18-60
AUTOTICK, 18-40, 18-60
BARNUMB, 18-31, 18-45, 18-60
BARSPACE, 18-29, 18-31, 18-60
BARWIDTH, 18-29, 18-31, 18-60
BSTACK, 18-29, 18-60
DEVICE, 18-10, 18-60
GCOLOR, 18-60
GMISSING, 18-48, 18-60
GMISSVAL, 18-48, 18-60
GPROMPT, 18-7, 18-60
GRAPH, 18-38
GRIBBON, 18-60
GRID, 18-35, 18-45, 18-60
GTREND, 18-35, 18-46, 18-60
HAUTO, 18-41, 18-60
HAXIS, 18-40, 18-60
HCLASS, 18-42, 18-60
HISTOGRAM, 18-28, 18-60
HMAX, 18-41, 18-60
HMIN, 18-41, 18-60
HSTACK, 18-28, 18-60
HTICK, 18-42, 18-60
PAUSE, 18-55, 18-60
PIE, 18-33, 18-60
PLOT, 18-60
PRINT, 18-10, 18-60
TERMINAL, 18-60
VAUTO, 18-43, 18-60
VAXIS, 18-43, 18-60
VCLASS, 18-44, 18-60
VGRID, 18-37, 18-45, 18-60
VMAX, 18-43, 18-60
VMIN, 18-43, 18-60
VTICK, 18-44, 18-60
VZERO, 18-48, 18-60

GRAPH requests, 18-12, 18-18
ACROSS phrase, 18-14 to 18-15
BY phrase, 18-14 to 18-15
concatenating files, 18-17
END command, 18-12, 18-59
IF phrase, 18-16
pie charts, 18-33
QUIT command, 18-59

Index

I-10 Information Builders

graph types, 18-1 to 18-2, 18-21
bar charts, 18-29
connected point plots, 18-22 to 18-23
histograms, 18-26
pie charts, 18-33
scatter diagrams, 18-35

GRAPH vs. TABLE, 18-2, 18-12

graphic devices, 18-10, 18-60

graphics
in free-form reports, 17-7

graphs, 18-1 to 18-2
adding footings, 18-18
adding grids, 18-45
adjusting parameter settings, 18-38, 18-60
annotating, 18-18
class and tick intervals, 18-42
creating from unlike data sources, 18-17
deferred output, 18-52
displaying, 18-7
displaying stored graphs, 18-52
fixed axis scales, 18-50
formatting, 18-7, 18-60
horizontal axis features, 18-14 to 18-15, 18-40,

18-60
missing data, 18-48, 18-60
naming subjects, 18-14
parameter settings, 18-60
plotting dates, 18-47
printer/plotter selection, 18-10, 18-60
prompting for values, 18-7
redisplaying with REPLOT, 18-2
saving, 18-51
saving formatted graphs, 18-54
selecting records, 18-16
stacking bars with OVER, 18-26
verb phrases, 18-14
vertical axis features, 18-43

GRIBBON parameter, 18-60

GRID parameter, 18-7, 18-35, 18-45, 18-60

group fields, 13-16
join structures and, 13-16

group key values, 5-26

grouping numeric data, 4-16 to 4-18
into tiles, 4-19 to 4-23

GT operator, 5-17 to 5-18, 8-14

GTREND parameter, 18-35, 18-46, 18-60

H
HAUTO parameter, 18-41, 18-60

HAXIS parameter, 18-40, 18-60

HCLASS parameter, 18-42, 18-60

headers and footers, 18-18
embedding field values, 18-20

headers in free-form reports, 17-6

headings, 9-29, 10-28
creating, 9-33, 18-18
inserting data in, 9-41 to 9-42, 9-44

headings and footings, 10-28

HELP from Hot Screen, 3-6

help reports, 1-4

Hewlett-Packard plotters, 18-56

hiding rows, 16-31 to 16-32

hiding sort field values, 4-29

hierarchy in StyleSheets, 10-43

high-order sort fields, 14-9, 14-11, 14-22, 14-24

high-resolution graphic devices, 18-10 to 18-11
Hewlett-Packard plotters, 18-56, 18-60
IBM devices and GDDM, 18-55, 18-60
Tektronics terminals, 18-57, 18-60

HISTOGRAM parameter, 18-28, 18-60

histograms, 18-26
HAXIS, 18-40, 18-60
VAXIS, 18-43, 18-60

HMAX parameter, 18-41, 18-60

HMIN parameter, 18-41, 18-60

HOLD AT CLIENT command, 11-3, 11-6

 Index

Creating Reports I-11

HOLD command, 11-2 to 11-3

HOLD files, 11-2 to 11-3, 11-10, 14-2
creating, 11-3 to 11-4, 11-6 to 11-7, 11-9 to

11-12, 11-42 to 11-44, D-1
external sorting and, 4-37 to 4-38
financial reports and, 16-35 to 16-36
formatting, 11-3
keyed retrieval and, 11-21 to 11-22
merge phrases and, 14-5 to 14-7
missing values and, 12-12
querying, 11-3, 11-8
suppressing field padding, 11-42 to 11-43
text fields and, 11-26, 11-40 to 11-41

HOLD formats, 11-26, 11-38
ALPHA, 11-27
BINARY, 11-27
COM, 11-29
COMMA, 11-28
COMT, 11-30
DB2, 11-30
DIF, 11-31
EXCEL, 11-31
FOCUS, 11-32
FUSION, 11-32
HTML, 11-32
HTMTABLE, 11-33
INGRES, 11-33
INTERNAL, 11-33, 11-42 to 11-43
LOTUS, 11-34
PDF, 11-34
PS, 11-34
Red Brick, 11-35
SQL, 11-35
SQLDBC, 11-35
SQLINF, 11-36
SQLMSS, 11-36
SQLODBC, 11-36
SQLORA, 11-37
SQLSYB, 11-37
SYLK, 11-37
WP, 11-38

HOLD Master Files, 11-3, 11-8
controlling attributes, 11-14, 11-18 to 11-20
displaying, 11-3, 11-8
field names and, 11-14 to 11-17

HOLDATTR command, 11-14, 11-19 to 11-20

HOLDLIST command, 11-14, 11-18 to 11-19

horizontal axis features, 18-40
class and tick intervals, 18-42
grids, 18-45
scale, 18-43
sorting graph subjects, 18-14 to 18-15
width, 18-40

horizontal bar charts, 18-29

host fields, 13-21
data formats for, 13-21

host files, 13-4, 13-12

Hot Screen, 3-8, 3-17
activating, 3-3
canceling commands, 3-10
displaying BY fields with panels, 3-12
function keys, 3-6, 3-14, 3-17
help information, 3-6
locating character strings, 3-10
panel, 3-15
previewing reports, 3-12
printing, 3-1
redisplaying reports, 3-11
reissuing previous command, 3-10
repeating commands, 3-10
SAVE files, 3-9
saving selected data, 3-9
scrolling, 3-7 to 3-8, 3-14
unusual character display, E-1

Hot Screen commands, 3-7
BACK, 3-7
BOTTOM, 3-7
DOWN, 3-7
FORW(ARD), 3-7
LEFT, 3-8
NEXT, 3-7
OFFLINE, 3-16
OFFLINE CLOSE, 3-16
RESET, 3-8
RETYPE, 3-11, 3-16
RIGHT, 3-8
TOP, 3-7
UP, 3-7

Index

I-12 Information Builders

HSTACK parameter, 18-28, 18-60

HTICK parameter, 18-42, 18-60

HTML format, 11-32

HTMTABLE format, 11-33

I
ICU (Interactive Chart Utility) Interface, 18-14,

18-54

identifying a range of values, 16-9

identifying cells, 16-20 to 16-21

identifying columns, 16-16, 16-18 to 16-20

identifying contiguous columns, 16-17

identifying rows, 16-13 to 16-15

IF … THEN … ELSE expressions, 8-16

IF command, 18-16

IF operator, 5-13, 5-15

IF phrase, 5-2, 5-28 to 5-29
expressions and, 8-2
selecting records and, 5-30, 5-32

IN phrase, 9-18 to 9-21

INCLUDES operator, 5-25 to 5-26

independent paths, 5-5
selection criteria and, 5-5 to 5-6

index optimized retrieval, 19-20

INGRES format, 11-33

IN-GROUPS-OF phrase, 4-16 to 4-17

inheritance in StyleSheets, 10-43

INSERT command, 19-22

INSERT INTO command, 19-11

inserting text in financial reports, 16-25 to 16-26

INTERNAL format, 11-33, 11-42 to 11-43

internal matrixes, 15-7
saving, 15-7

international printable characters, E-4

INTERSECT operator, 19-15

irrelevant report data, 12-1 to 12-2

IS NOT operator, 5-20 to 5-21

IS operator, 5-20 to 5-21

ITEM, 10-29

J
JOBFILE data source, A-6

JOIN CLEAR command, 13-34 to 13-35

JOIN command, 13-12 to 13-13, 13-17, 13-23,
19-8 to 19-10

ALL parameter and, 13-4, 13-6
recursive structures, 13-7, 13-9
SQL Translator and, 19-8 to 19-10
supported data sources, 13-3

join structures, 5-38, 13-1, 13-3, 13-12 to 13-13,
13-15, 19-8 to 19-9

clearing, 13-34 to 13-35
cross-referenced fields, 13-15
DBA security and, 13-4
DEFINE command and, 6-11, 13-17, 13-19 to

13-20, 13-26 to 13-27, 13-29
displaying, 13-31 to 13-33
group fields and, 13-16
optimizing, 19-20
qualified field names and, 19-10
WHERE phrase and, 13-31

join types, 13-2
conditional, 13-2
equijoins, 13-2

JOINOPT parameter, 13-22

justifying column titles, 9-26 to 9-27

 Index

Creating Reports I-13

K
KEEPDEFINES parameter, 13-26 to 13-27

key fields, 11-9, 11-11

keyed retrieval, 11-21
HOLD files and, 11-21 to 11-22

L
LE operator, 5-17 to 5-18, 8-14

LEDGER data source, A-13

LEFT command in Hot Screen, 3-8

LEFTGAP, 10-42

LEFTMARGIN parameter, 10-15

letters, E-2

LIKE operator, 5-20 to 5-21

limits for display fields, 1-13

LINE, 10-29

linear regression, 6-27 to 6-28

LIST * command, 2-5

LIST command, 2-1, 2-3, 2-13, 4-2

listing join structures, 13-33

literals, 19-15

load procedures, A-1 to A-2

LOCATE command, 3-10
TABLE, 3-10

locating character strings, 3-10

logical expressions, 5-12, 5-19, 8-3, 8-14

logical operators, 5-12, 8-14
CONTAINS, 5-19 to 5-20
OMITS, 5-19 to 5-20

long field names, 1-13 to 1-15

LOTUS format, 11-34

low-resolution graphic devices, 18-10

LST prefix operator, 2-24

LT operator, 5-17 to 5-18, 8-14

M
masked fields, 5-20 to 5-22

masking, 16-9

masking characters, 5-20, 5-22
treating as literals, 5-24 to 5-25

masks, 5-20 to 5-21

Master Files, 1-2
filters and, 5-32
HOLD files, 11-3
MISSING attribute and, 12-4 to 12-5
samples, A-1 to A-2

MATCH command, 14-2 to 14-5

MATCH FILE command, 14-2 to 14-7, C-4
concatenated data sources and, 14-19 to 14-20
display commands and, 14-12
merge phrases and, 14-6

mathematical symbols, E-3

matrix reports, 4-9
calculating row and column totals, 7-2, 7-4
creating, 4-9 to 4-10

matrixes, 1-7
creating, 1-9
internal, 15-7
saving, 15-7

MAX prefix operator, 2-18

medium-resolution graphic devices, 18-10 to 18-11,
18-55

Anderson Jacobson, 18-60
Gencom, 18-60

merge phrases, 14-5, 14-7
HOLD files and, 14-5 to 14-6
MATCH FILE command and, 14-5 to 14-6

merging data sources, 14-1 to 14-7, 14-9, 14-11,
14-19 to 14-20, 14-22, 14-24

display commands and, 14-12

Index

I-14 Information Builders

MIN prefix operator, 2-18

MISSING attribute, 5-19, 12-3, 12-9 to 12-11
extract files and, 12-12
limits, 12-5
Master Files and, 12-4 to 12-5
virtual fields and, 12-5

missing values, 5-19, 12-1, 12-3 to 12-4
ALL command and, 12-17 to 12-18
ALL prefix and, 12-16
DEFINE command and, 12-4 to 12-8
designating, 12-20
excluding from tests, 12-11
extract files and, 12-12
GRAPH requests, 18-48, 18-60
irrelevant report data, 12-2
segment instances and, 12-3, 12-13 to 12-15
temporary fields and, 12-6
testing for, 12-9, 12-19

MORE phrase, 14-14 to 14-16, 14-19, 18-17

MOVAVE method, 6-17 to 6-18, 6-21 to 6-22, 6-24

MOVIES data source, A-24

MULTILINES command, 7-8, 7-12, 9-36 to 9-37

multi-path data sources, 2-6, 2-8
displaying the structure, 2-6
sort fields and, 4-3, 4-6
virtual fields and, 6-9

MULTIPATH parameter, 5-5 to 5-6
ALL parameter and, 5-5, 5-8
segments and, 5-5, 5-9

multiple records, 16-8

multiple sort fields, 4-4 to 4-5, 4-7

multiple virtual fields, 6-7 to 6-8

multiplication operator, 8-4 to 8-5

multi-segment data sources, 5-25
selecting records and, 5-25 to 5-26

N
National Language Support (NLS), 4-33

NE operator, 5-19, 8-14

NEXT command in Hot Screen, 3-7

NLS (National Language Support), 4-33

NODATA character, 12-2 to 12-3, 12-20
setting, 12-20

non-numeric fields, 2-9 to 2-10

non-recursive models, 16-28

non-unique join structures, 13-2, 13-4, 13-6

NOPAGE command, 9-5

NOPRINT command, 4-29, 9-11 to 9-12, 16-31

NOSPLIT command, 9-5 to 9-6

NOT FROM ... TO operator, 5-16 to 5-17

NOT LIKE operator, 5-20 to 5-21

NOT operator, 8-14

NOTOTAL command, 7-19 to 7-20

numbers, E-2
printable characters, E-2

numeric constants, 19-15

numeric data types, 13-22
joins and, 13-22

numeric expressions, 8-3
creating, 8-4
operators, 8-4 to 8-5
order of evaluation and, 8-5 to 8-6

numeric fields, 2-9
adding values, 2-9

 Index

Creating Reports I-15

O
OBJECT, 10-29

OFFLINE CLOSE, 3-16

OFFLINE command, 3-16
TABLE, 3-1

offline printing in Hot Screen, 3-16

OMITS operator, 5-19 to 5-20

ON GRAPH command, 18-51

ON phrase, 9-46 to 9-47

ON TABLE, C-2

ONLINE command, 3-1
TABLE, 3-1

ONLINE-FMT parameter, 10-12

operators, 8-14
arithmetic, 8-4 to 8-5
Boolean, 8-14
logical, 5-12, 5-19, 8-14
prefix, 2-15 to 2-16
relational, 5-13, 5-15 to 5-19, 8-14

optimized join structures, 19-20

OR operator, 5-12, 8-14, 16-8

order of evaluation, 8-5 to 8-6
numeric expressions and, 8-5 to 8-6

ORIENTATION parameter, 10-14

output file formats, 11-26
ALPHA, 11-27
BINARY, 11-27
COM, 11-29
COMMA, 11-28
COMT, 11-30
DB2, 11-30
DIF, 11-31
EXCEL, 11-31
FOCUS, 11-32
FUSION, 11-32
HTML, 11-32
HTMTABLE, 11-33
INGRES, 11-33

output file formats (continued)
INTERNAL, 11-33
LOTUS, 11-34
PDF, 11-34
PS, 11-34
Red Brick, 11-35
SQL, 11-35
SQLDBC, 11-35
SQLINF, 11-36
SQLMSS, 11-36
SQLODBC, 11-36
SQLORA, 11-37
SQLSYB, 11-37
SYLK, 11-37
WP, 11-38

output files, 11-2
creating, 11-3
formatting, 11-26
missing values and, 12-12
naming, 11-2
saving, 11-2
text fields and, 11-26, 11-40 to 11-41

OVER command, 9-22 to 9-24
GRAPH, 18-26

P
padded fields, 11-42 to 11-43

page breaks, 9-2 to 9-3, 9-5
suppressing, 9-5 to 9-6

page footings, 9-33
creating, 9-34

page headings, 9-30
creating, 9-30, 9-32

page numbers, 9-2, 9-4
inserting, 9-4
suppressing, 9-5

PAGE parameter, 9-5

PAGE-BREAK command, 9-2 to 9-3, 16-30

PAGENUM parameter, 10-24

pages, 9-2
formatting with StyleSheets, 10-13

Index

I-16 Information Builders

PAGESIZE parameter, 10-16

panels, 3-15
viewing reports, 3-15

parent instances, 12-17 to 12-18

PAUSE parameter, 18-55
GRAPH, 18-60

PAYHIST data source, A-20

PCHOLD command, 11-2 to 11-3, 11-6

PCHOLD files, 11-3
creating, 11-3, 11-6
formatting, 11-3, 11-6

PCHOLD formats, 11-26
ALPHA, 11-27
BINARY, 11-27
DIF, 11-31
EXCEL, 11-31
HTML, 11-32
HTMTABLE, 11-33
LOTUS, 11-34
PDF, 11-34
WP, 11-38

PCT prefix operator, 2-19

PCT.CNT prefix operator, 2-21

PDF format, 11-34

percentiles, 4-19

performance, 4-33, 15-1, 19-21
improving, 4-33, 4-37, 13-13, 15-1, 19-21

pie charts, 18-33

PIE parameter, 18-33, 18-60

PLOT parameter, 18-60

POSITION attribute, 10-38

positional labels, 16-13 to 16-15

positioning text, 9-39 to 9-40

POST command, 16-33

posting data to a file, 16-33

PostScript (PS) files, 10-7, 10-12

PostScript format, 11-34

precision, 2-13
expanding, 2-13 to 2-14

prefix operators, 2-15 to 2-16
ASQ, 2-17 to 2-18
AVE, 2-17
CNT, 2-27
display fields and, 2-15
distinct, 2-21 to 2-22
DST, 2-21 to 2-22
FST, 2-24
GRAPH, 18-14
in free-form reports, 17-7
LST, 2-24
MAX, 2-18
MIN, 2-18
PCT, 2-19
PCT.CNT, 2-21
RPCT, 2-19 to 2-20
SUM, 2-27
TOT, 2-27 to 2-28

preserving field names, 11-14

preserving missing values, 12-12

PRINT * command, 2-5

PRINT command, 2-1, 2-3, 2-5, 4-2
GRAPH, 18-10, 18-60
merging data sources and, 14-12
unique segments, 2-5 to 2-6, 2-8

printable characters, E-4

printer/plotter selection for graphs, 18-10, 18-60

printing StyleSheets, 10-12

PRINTONLY parameter, 11-18 to 11-19

PRINTPLUS parameter, 3-4

procedures, A-1
load, A-1 to A-2

PROD data source, A-10

PS (PostScript) files, 10-7, 10-12

punctuation, E-3
accent marks, E-4
printable characters, E-3

 Index

Creating Reports I-17

Q
qualified field names, 1-13 to 1-15, 19-10, 19-14

SQL join structures and, 19-10
SQL Translator and, 19-14

qualified field values, 2-29, 5-25
in parent segments, 5-25
WITHIN phrase and, 2-29

QUALTITLES parameter, 9-17

quartiles, 4-19

query commands, 10-17
? STYLE, 10-17
?F, 1-16
?FF, 1-17

QUIT command, 1-5
in GRAPH request, 18-12, 18-59

quotation marks, 8-12

quote-delimited strings, 8-12 to 8-13

R
range of values, 16-9

range tests, 5-16 to 5-18

ranges, 4-16 to 4-18

RANKED BY phrase, 4-27 to 4-28

RANKED BY TOTAL phrase, 4-27

ranking sort field values, 4-24 to 4-25, 4-27 to 4-28

READLIMIT operator, 5-27

RECAP command, 7-16 to 7-19, 10-26, 16-3,
16-12 to 16-13

expressions and, 8-2

RECOMPUTE command, 7-12 to 7-13, 7-15

RECORDLIMIT operator, 5-27 to 5-28

records, 1-10
combining, 16-8 to 16-9
comparing, 14-5 to 14-7
listing, 2-3 to 2-4
retrieving, 2-24, 5-27 to 5-28

records (continued)
selecting, 1-10, 5-1, 5-5 to 5-6, 5-10 to 5-13,

5-15 to 5-16, 5-19 to 5-20, 5-25 to 5-26, 5-28 to
5-32

selecting in free-form reports, 17-8
sorting in free-form reports, 17-8

recursive join structures, 13-7, 13-9 to 13-10, 19-10

recursive models, 16-28 to 16-29

Red Brick format, 11-35

reformatting fields, 1-21 to 1-22, 1-23

REGION data source, A-15

REGRESS method, 6-17 to 6-18, 6-21, 6-27 to 6-28

relational expressions, 5-12, 8-14 to 8-15

relational operators, 5-13, 5-15 to 5-19, 8-14
EXCLUDES, 5-25 to 5-26
INCLUDES, 5-25 to 5-26
IS, 5-20 to 5-21
LIKE, 5-20 to 5-21
NOT IS, 5-20 to 5-21
NOT LIKE, 5-20 to 5-21
READLIMIT, 5-27
RECORDLIMIT, 5-27 to 5-28
testing multi-segment files, 5-25
wildcard characters and, 5-20, 5-22

REPAGE command, 9-2

repeating fields, 13-7

repeating rows, 16-15

REPLOT command, 18-2
GRAPH, 18-2

REPORT, 10-24

report columns, 4-25
formatting, 1-19 to 1-20, 1-24
summing and sorting, 4-25 to 4-26

report components, 10-21

report footings, 9-29, 9-33
creating, 9-33

report headings, 9-29 to 9-30
creating, 9-30 to 9-31

Index

I-18 Information Builders

report panels, 3-14

report requests, 1-6, 19-1
SQL statements and, 19-1

report types, 4-9
free-form, 9-45, 17-1 to 17-2
matrix, 4-9

reports, 1-1 to 1-3, 1-13, 3-1
comparing styled and non-styled, 10-8
customizing, 1-17 to 1-18, 9-1, 10-2
displaying, 1-5, 3-1 to 3-2, 3-11, 3-17, 9-52
displaying data, 1-6 to 1-7, 5-1
formatting, 7-21, 9-2 to 9-5, 9-8 to 9-11, 9-15,

9-17 to 9-18, 9-22 to 9-23, 9-25 to 9-28, 9-30,
9-33, 9-35 to 9-36, 9-39, 9-46

formatting with StyleSheets, 10-1
printing, 1-5, 3-17
reusing output, 11-1
running, 1-5
saving, 1-5, 1-24, 11-1 to 11-2
scrolling in Hot Screen, 3-7
selecting records, 1-10
sorting, 1-7 to 1-9, 4-1 to 4-7, 4-10, 4-12, 4-16,

4-27, 4-29
syntax summary, C-1

reserved words, 19-4

RESET command in Hot Screen, 3-8

restricting sort field values, 4-24 to 4-25, 4-27 to
4-28

restructuring data, 15-3

retrieval limits, 5-27 to 5-28

retrieval logic, 15-2

retrieval order, 4-37
setting, 4-37

retrieving data, 16-34

retrieving records, 5-27 to 5-28, 13-13

returned fields, 8-10

RETYPE command, 3-11, 3-16

reusing report output, 1-24, 11-1

RIGHT command in Hot Screen, 3-8

RIGHTGAP, 10-42

RIGHTMARGIN parameter, 10-15

row titles, 16-7

row totals, 1-10, 7-2 to 7-3
calculated values and, 7-2, 7-6
calculating, 7-2 to 7-3
renaming, 7-2, 7-5

rows, 1-7
assigning titles, 16-7
calculating percent, 2-19 to 2-20
calculating totals, 7-2 to 7-3
calculations and, 16-12 to 16-13
creating, 16-5 to 16-6, 16-8
identifying, 16-13 to 16-15
repeating, 16-15
saving, 16-33
sorting by, 1-9, 4-3 to 4-5
suppressing, 16-31 to 16-32

ROW-TOTAL phrase, 7-2 to 7-3

RPCT prefix operator, 2-19 to 2-20

RUN command, 1-5

S
SALES data source, A-8 to A-9

sample data sources, A-2
CAR, A-11
COMASTER, A-21
COURSES, A-16
creating, A-1, A-2
EDUCFILE, A-7
EMPDATA, A-17
EMPLOYEE, A-3
EXPERSON, A-18
FINANCE, A-14
Gotham Grinds data sources, A-29
JOBFILE, A-6
LEDGER, A-13
MOVIES, A-24
PAYHIST, A-20
PROD, A-10
REGION, A-15
SALES, A-8 to A-9

 Index

Creating Reports I-19

sample data sources (continued)
TRAINING, A-19
VIDEOTR2, A-26
VideoTrk, A-24

SAVB command, 11-23

SAVB files, 11-23
creating, 11-25 to 11-26
formatting, 11-25

SAVE command, 11-2, 11-23

SAVE files, 11-23
creating, 11-23 to 11-24
formatting, 11-23
GRAPH, 18-51
in Hot Screen, 3-9

SAVE formats, 11-26
ALPHA, 11-27
COM, 11-29
COMMA, 11-28
COMT, 11-30
DIF, 11-31
EXCEL, 11-31
HTML, 11-32
HTMTABLE, 11-33
LOTUS, 11-34
PDF, 11-34
WP, 11-38

SAVEMATRIX parameter, 15-7

saving intermediate report results, 16-32

saving report output, 1-24, 11-1 to 11-2

saving rows, 16-33

saving selected data, 3-9

scalar functions, 19-15

scatter diagrams, 18-35

SCREEN parameter, 3-3

screening conditions, 5-32

scrolling in Hot Screen, 3-7

SEG. operator, 1-16

segment instances, 12-1
missing descendants, 12-17 to 12-18
missing values and, 12-13 to 12-15

segment locations, 6-8

segment types, 2-24 to 2-25

segments, 1-16, 5-5, 12-3
missing instances, 12-3
MULTIPATH parameter and, 5-5, 5-9
screening, 13-31

SEGTYPE parameter, 11-21

selecting records, 1-10, 5-1, 5-5 to 5-6, 5-10 to
5-13, 5-15 to 5-16, 5-19 to 5-20, 5-26, 5-28 to
5-29

aggregate values and, 5-10
multi-segment data sources and, 5-25 to 5-26
VSAM data sources and, 5-39

selecting sort procedures, 4-34

selection criteria, 5-1 to 5-6, 5-13, 5-15 to 5-16,
7-21

partitioned FOCUS data sources and, 5-3
reading from a file, 5-29 to 5-32

selection of records
in free-form reports, 17-8

SEQUENCE, 10-40

-SET command, 8-2

SET END command in GRAPH, 18-60

SET parameters, 9-27 to 9-28, 11-14, 15-4, 19-21
ALL, 12-17 to 12-18
ASNAMES, 11-14 to 11-17
AUTOINDEX, 15-4
AUTOPATH, 15-4
BYPANEL, 3-12
BYSCROLL, 3-9
COLUMNS, 3-14
COMPUTE, 6-10
COUNTWIDTH, 2-10, 2-13
EMPTYREPORT, 3-6, 9-52
ESTRECORDS, 4-38 to 4-39
EXTAGGR, 4-35
EXTHOLD, 4-37 to 4-38
EXTSORT, 4-33 to 4-34

Index

I-20 Information Builders

SET parameters (continued)
FIELDNAME, 1-15
FILE, 1-4
FILTER, 5-32, 5-35
FIXRETRIEVE, 11-21
GRAPH, 18-60
HOLDATTR, 11-14, 11-19 to 11-20
HOLDLIST, 11-14, 11-18 to 11-19
JOINOPT, 13-22
ONLINE-FMT, 10-12
PAGE, 9-5
PANEL, 3-15
PRINTPLUS, 3-4
QUALTITLES, 9-17
SAVEMATRIX, 15-7
SCREEN, 3-3
SPACES, 9-25
SQLTOPTTF, 19-21
STYLESHEET (STYLE), 10-11
XRETRIEVAL, 3-12

short path definitions, 12-15

simple moving average, 6-21 to 6-22, 6-24

SIZE parameter, 10-19

SKIP-LINE command, 9-8 to 9-9

SKIPLINE phrase, 10-24

sort
in free-form reports, 17-8

sort field values, 4-24
hiding, 4-29
ranking, 4-27 to 4-28
restricting, 4-24 to 4-25, 4-27 to 4-28

sort fields, 4-1
multi-path data sources and, 4-3, 4-6
multiple, 4-4, 4-7, 4-31 to 4-32
ranking values, 4-24
temporary, 4-3, 4-5 to 4-6

sort order, 4-4, 4-7, 4-10
grouping numeric data, 4-16 to 4-19
specifying, 4-10 to 4-15

sort phrases, 2-3

sort procedures, 4-33
querying, 4-34
selecting, 4-34

sort sequence, 4-3, 4-6

sort values, 4-2 to 4-3, 4-16, 4-29

sorting, 4-33
optimizing, 4-33

sorting by columns, 4-5 to 4-6

sorting by multiple fields, 4-4, 4-7

sorting by rows, 4-3 to 4-4

sorting report rows, 1-9

sorting reports, 6-15

SORTWORK files, 4-38 to 4-39

SPACES parameter, 9-25

special characters in free-form reports, 17-7

splits, 9-5
preventing, 9-5 to 9-6

spot markers, 9-39

SQL format, 11-35

SQL join structures, 19-8 to 19-9
qualified field names and, 19-10

SQL SELECT statement, 19-7

SQL statements, 19-2, 19-4
FOCUS TABLE requests and, 19-1

SQL Translation Services, 19-2, 19-4

SQL Translator, 19-1
aliases and, 19-10
Cartesian product answer sets and, 19-13
Continental Decimal Notation (CDN) and, 19-13
CREATE TABLE command and, 19-11
CREATE VIEW command and, 19-12
date formats and, 19-15 to 19-16
date-time values and, 19-17 to 19-19
DELETE command and, 19-22
DROP VIEW command and, 19-12 to 19-13
field names and, 19-14
generating TABLEF commands, 19-21

 Index

Creating Reports I-21

SQL Translator (continued)
index optimized retrieval and, 19-20
INSERT command and, 19-22
INSERT INTO command and, 19-11
JOIN command and, 19-8 to 19-10
join structures and, 19-20
reserved words and, 19-4
SQLTOPTTF parameter and, 19-21
time and timestamp fields and, 19-15 to 19-16
UPDATE command and, 19-22

SQL Translator commands, 19-5, 19-7
formatting commands and, 19-6

SQLDBC format, 11-35

SQLINF format, 11-36

SQLMSS format, 11-36

SQLODBC format, 11-36

SQLORA format, 11-37

SQLSYB format, 11-37

SQLTOPTTF parameter, 19-21

SQUEEZE parameter, 10-15

STAT query, 4-34

stoplighting, 10-49

structure diagrams, A-1 to A-2

STYLE, 10-11, 10-19

style sheets, 16-30
financial reports and, 16-30

styled reports, 10-8

STYLESHEET, 10-11

StyleSheets, 10-1, 10-8
ACROSS, 10-34
ACROSSCOLUMN, 10-34
ACROSSTITLE, 10-25
ACROSSVALUE, 10-25
activating, 10-11
BOTTOMMARGIN, 10-14
BY, 10-26
CHECK STYLE, 10-19
COLOR, 10-19

StyleSheets (continued)
COLUMN, 10-34
conditional styling, 10-49
creating within a report request, 10-9
DATA, 10-24
FOCSTYLE file, 10-17
FONT, 10-19
FOOTING, 10-28
GRANDTOTAL, 10-26
HEADING, 10-28
hierarchy, 10-43
identifying report components, 10-21
inheritance, 10-43
ITEM, 10-29
LEFTGAP, 10-42
LEFTMARGIN, 10-15
LINE, 10-29
OBJECT, 10-29
ORIENTATION, 10-14
page layout parameters, 10-13
PAGENUM, 10-24
PAGESIZE, 10-16
POSITION, 10-38
printing, 10-12
RECAP, 10-26
REPORT, 10-24
report components, 10-21
requirements, 10-6 to 10-7
RIGHTGAP, 10-42
RIGHTMARGIN, 10-15
SEQUENCE, 10-40
SIZE, 10-19
SKIPLINE, 10-24
SQUEEZE, 10-15
stoplighting, 10-49
STYLE, 10-19
StyleSheet file, 10-17
SUBFOOT, 10-28
SUBHEAD, 10-28
SUBTOTAL, 10-26
TABFOOTING, 10-28
TABHEADING, 10-28
TITLE, 10-25
TOPMARGIN, 10-14
UNDERLINE, 10-24
UNITS, 10-14
WHEN, 10-49, 10-51

Index

I-22 Information Builders

StyleSheets file, 10-17

SUBFOOT command, 9-36 to 9-38

subfootings, 9-36, 9-38, 10-28
creating, 9-37
displaying, 9-48, 9-50
inserting data in, 9-41, 9-43 to 9-44

subheadings, 9-35 to 9-36, 10-28
creating, 9-35
displaying, 9-49
inserting data in, 9-41, 9-44

subroutines, 16-22
calling, 16-22 to 16-23

SUBTOTAL command, 7-8 to 7-11

SUB-TOTAL command, 7-8 to 7-11

subtotals, 1-10, 1-11, 7-1, 7-6, 7-16
calculated values and, 7-12, 7-14 to 7-15
COMPUTE command and, 7-16
displaying, 7-6 to 7-12, 9-48
RECAP command and, 7-16 to 7-19
SUBTOTAL, 10-26

subtraction operator, 8-4 to 8-5

SUM command, 2-1, 2-9 to 2-10, 4-2
merging data sources and, 14-12

SUM prefix operator, 2-27

SUMMARIZE command, 7-12 to 7-14

summary lines, 7-21
displaying, 7-21
SUBFOOT, 10-28

summing values, 4-2

SUMPREFIX parameter, 4-37

supplying data directly in FML, 16-24

suppressing field display, 9-11 to 9-13

suppressing field padding, 11-42 to 11-43

suppressing grand totals, 7-19 to 7-20

suppressing rows, 16-31 to 16-32

suppressing sort field values, 4-29

SUP-PRINT command, 4-29, 9-11, 9-13

SYLK format, 11-37

symbols, E-3
printable characters, E-3

SyncSort sorting product, 4-33

syntax summary, C-1
GRAPH, 18-57
TABLE, C-2

system variables, 9-4
TABPAGENO, 9-4

T
tab-delimited extract files, 11-38

TABFOOTING, 10-28

TABHEADING, 10-28

TABLE, C-2
basic reporting concepts, 3-6
displaying reports in Hot Screen, 3-1
displaying reports in TOE, 3-17
displaying reports with parameter set to

ONLINE, 3-1
empty reports, 3-6
extracting data, 3-17
extracting data from Hot Screen, 3-9
help information, 3-6
OFFLINE, 3-1, 3-16
ONLINE, 3-1
previewing reports, 3-11 to 3-12
printing reports, 3-1
redefining field formats, 3-11
redisplaying reports, 3-11, 3-16
StyleSheets, 10-1
suppressing report display, 3-6
with zero records, 3-6

TABLE FILE command, 1-3

TABLE requests, 19-1
SQL statements and, 19-1

TABLEF command, 15-6, 19-21
data retrieval and, 15-6
SQL Translator and, 19-21

 Index

Creating Reports I-23

TABPAGENO variable, 9-4

TABT format, 11-38

tag names, 13-9

tagged rows, 16-31 to 16-32
suppressing, 16-31 to 16-32

Tektronics terminals, 18-57

temporary fields, 1-12, 6-1, 6-3
as sort fields, 4-3, 4-6
creating, 1-12
creating with COMPUTE, 6-2, 6-11 to 6-13
creating with DEFINE, 6-2 to 6-4
creating with DEFINE FUNCTION, 6-33
missing values and, 12-6
subroutines and, 6-32

Terminal Operator Environment (TOE), 3-17

TERMINAL parameter, 18-60

testing for blanks or zeros, 12-11

testing for existing data, 12-10

testing for missing segment instances, 12-19

testing for missing values, 12-9

text, 9-39
in free-form reports, 17-6
positioning, 9-40

text fields, 4-3
output files and, 11-26, 11-40 to 11-41

tick intervals in GRAPH, 18-42

TILE column, 4-19 to 4-20, 4-22, 4-23

tile fields, 4-19 to 4-20, 4-22 to 4-23

TILES phrase, 4-19 to 4-20, 4-22 to 4-23

time fields, 19-15
SQL Translator and, 19-16

timestamp fields, 19-15
SQL Translator and, 19-16

TITLE attribute, 11-19 to 11-20

TITLE parameter, 10-25

TO phrase, 16-9

TOP command in Hot Screen, 3-7

TOPMARGIN parameter, 10-14

TOT prefix operator, 2-27 to 2-28

totaling rows and columns, 1-10

totals, 1-10 to 1-11, 4-7 to 4-8, 7-1
suppressing, 7-19

TRAINING data source, A-19

trend values, 6-17

TYPE attribute in StyleSheet, 10-21
ACROSSTITLE, 10-25
ACROSSVALUE, 10-25
DATA, 10-24
FOOTING, 10-28
GRANDTOTAL, 10-26
HEADING, 10-28
PAGENUM, 10-24
RECAP, 10-26
REPORT, 10-24
SKIPLINE, 10-24
SUBFOOT, 10-28
SUBHEAD, 10-28
SUBTOTAL, 10-26
TABFOOTING, 10-28
TABHEADING, 10-28
TITLE, 10-25
UNDERLINE, 10-24

U
UNDER-LINE command, 9-10

UNDERLINE phrase, 10-24

UNION operator, 19-15

unique join structures, 13-2, 13-4 to 13-5, 13-15

UNITS parameter, 10-14

universal concatenation, 14-14, 18-17
field names and, 14-17 to 14-18
MORE phrase, 18-17
MORE phrase and, 14-14 to 14-16

UP command in Hot Screen, 3-7

UPDATE command, 19-22

Index

I-24 Information Builders

user-coded programs, D-1

V
values, 9-41

embedding, 9-41

VAUTO parameter, 18-43, 18-60

VAXIS parameter, 18-43, 18-60

VCLASS parameter, 18-44, 18-60

verbs, 2-1, 4-2
multiple, 4-31

vertical axis features, 18-60
class and tick intervals, 18-42, 18-44, 18-60
graph element, 18-7
grids, 18-7, 18-45, 18-60
height, 18-43
scale, 18-43

VGRID parameter, 18-37, 18-45, 18-60

VIDEOTR2 data source, A-26

VideoTrk data source, A-24

virtual fields, 6-2 to 6-3
adding, 6-7, 6-8
associating segments, 6-8
creating, 6-4, 6-6 to 6-7, 6-9
deleting, 6-4, 6-6 to 6-7, 6-8
filters and, 5-32, 5-34
in Master Files, 6-4, 6-6
join structures and, 6-4, 6-6, 6-11, 13-17, 13-19

to 13-20, 13-26 to 13-27, 13-29
MISSING attribute and, 12-5
missing values and, 12-6
saving, 6-10 to 6-11, 13-26 to 13-27, 13-29

VMAX parameter, 18-43, 18-60

VMIN parameter, 18-43, 18-60

VMSORT sorting product, 4-33

VSAM data sources, 5-39
selecting records and, 5-39

VTICK parameter, 18-44, 18-60

VZERO parameter, 18-48, 18-60

W
WebFOCUS StyleSheets, 16-30

formatting financial reports and, 16-30

WHEN clause, 9-46 to 9-47, 9-50

WHEN command, 10-49
ACROSSCOLUMN, 10-51

WHEN EXISTS phrase, 16-32

WHEN phrase, 7-21, 8-2
expressions and, 8-2

WHERE operator, 5-13, 5-15, 5-17 to 5-19

WHERE phrase, 5-2, to 5-4, 5-10 to 5-12, 5-20,
5-22, 5-29, 8-2

existing data and, 12-10
expressions and, 8-2
missing values and, 12-9, 12-11
selecting records and, 5-30 to 5-31

WHERE TOTAL phrase, 5-10 to 5-11
COMPUTE and, 6-16

WHERE-based joins, 13-2

widow lines, 9-5 to 9-6
preventing, 9-6

wildcard characters, 5-20
relational operators and, 5-20, 5-22
treating as literals, 5-24 to 5-25

WITHIN phrase, 2-29

WP format, 11-38

WRITE command, 2-9

Z
zeros, 12-11

testing for, 12-11

Reader Comments
In an ongoing effort to produce effective documentation, the Documentation Services staff at Information
Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections. Identify
specific pages where applicable. You can contact us through the following methods:

Mail: Documentation Services – Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html

Name: __

Company: ___

Address: __

Telephone: ___ Date:______________________________

E-mail: ___

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Creating Reports DN1001056.1101
Version 7.2

Reader Comments

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
FOCUS for S/390 Creating Reports DN1001056.1101
Version 7.2

	Preface
	Contents
	1. Creating Tabular Reports
	Requirements for Creating a Report
	Creating a Report Request
	Beginning a Report Request
	Requesting Help When Issuing a Report Request
	Completing a Report Request
	Selecting a Report Output Destination

	The Parts of a Report Request
	Displaying Data
	Sorting a Report
	Selecting Records
	Showing Subtotals and Totals
	Creating Temporary Fields

	Including Display Fields in a Report Request
	Referring to Fields in a Report Request
	Referring to an Individual Field
	Referring to Fields Using Long and Qualified Field Names
	Referring to All of the Fields in a Segment
	Displaying a List of Field Names
	Listing Field Names, Aliases, and Format Information

	Customizing a Report
	Changing the Format of a Report Column
	Field-Based Reformatting
	Determining the Width of a Report Column

	Saving and Reusing Report Output

	2. Displaying Report Data
	Displaying Individual Values
	Displaying All Fields
	Displaying the Structure of a Multi˚Path Data Source

	Adding Values
	Counting Values
	Counting Segment Instances

	Manipulating Display Fields With Prefix Operators
	Averaging Values of a Field
	Averaging the Sum of Squared Fields
	Calculating Maximum and Minimum Field Values
	Calculating Column and Row Percents
	Producing a Direct Percent of a Count
	Aggregating and Listing Unique Values
	Retrieving First and Last Records
	Summing and Counting Values

	Manipulating Display Field Values in a Sort Group

	3. Viewing and Printing Report Output
	Displaying Reports in Hot Screen
	Using PRINTPLUS
	Controlling the Display of Empty Reports
	Accessing Help Information

	Scrolling a Report
	Scrolling Forward
	Scrolling Backward
	Scrolling Horizontally
	Scrolling From Fixed Columns (Fencing)
	Scrolling Report Headings
	Saving Selected Data
	Locating Character Strings
	Repeating Commands
	Redisplaying Reports
	Previewing Your Report
	Displaying BY Fields With Panels
	Scrolling by Columns of BY Fields in Panels
	The SET COLUMNS Command

	Displaying Reports in the Panel Facility
	Printing Reports
	The OFFLINE Command
	Printing Reports in Hot Screen

	Displaying Reports in the Terminal Operator Environment

	4. Sorting Tabular Reports
	Sorting Rows
	Using Multiple Sort Fields With BY

	Sorting Columns
	Using Multiple Sort Fields With ACROSS
	Producing Column Totals With ACROSS-TOTAL

	Sorting Rows and Columns
	Specifying the Sort Order
	Specifying Your Own Sort Order

	Grouping Numeric Data Into Ranges
	Grouping Numeric Data Into Tiles

	Restricting Sort Field Values by Highest/Lowest Rank
	Aggregating and Sorting Report Columns
	Ranking Sort Field Values
	Hiding Sort Values
	Sorting With Multiple Display Commands
	Improving Efficiency With External Sorts
	Aggregation by External Sort
	Changing Retrieval Order With Aggregation
	Using External Sorts to Extract Data
	Estimating SORTWORK Sizes for an External Sort
	Displaying External Sort Messages

	5. Selecting Records for Your Report
	Choosing a Filtering Method
	Selections Based on Individual Values
	Controlling Record Selection in Multi-Path Data Sources

	Selection Based on Aggregate Values
	Using Compound Expressions for Record Selection
	Using Operators in Record Selection Tests
	Types of Record Selection Tests
	Range Tests With FROM and TO
	Range Tests With GE and LE or GT and LT
	Missing Data Tests
	Character String Screening With CONTAINS and OMITS
	Screening on Masked Fields With LIKE and IS
	Using an Escape Character for LIKE
	Qualifying Parent Segments Using INCLUDES and EXCLUDES

	Selections Based on Group Key Values
	Setting Limits on the Number of Records Read
	Selecting Records Using IF Phrases
	Reading Selection Values From a File
	Assigning Screening Conditions to a File
	Applying Filters to Joined Structures

	VSAM Record Selection Efficiencies
	Reporting From Files With Alternate Indexes

	6. Creating Temporary Fields
	The Difference Between DEFINE and COMPUTE
	Defining a Virtual Field
	Defining Multiple Virtual Fields
	Establishing a Segment Location for a Virtual Field
	Defining Virtual Fields Using a Multi-Path Data Source
	Increasing the Speed of DEFINE Calculations
	Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN

	Computing Calculated Values
	Using Positional Column Referencing With Calculated Values
	Using COMPUTE and ACROSS
	Sorting Calculated Values
	Screening on Calculated Values

	Calculating Trend Values and Forecasts
	FORECAST Processing
	Forecasting Methods
	Using a Simple Moving Average
	Using an Exponential Moving Average
	Using a Linear Regression Equation
	FORECAST Reporting Techniques

	Using Functions With Temporary Fields
	Creating Temporary Fields Unrelated to Master Files

	7. Including Totals and Subtotals
	Calculating Row and Column Totals
	Adding Section Totals and a Grand Total
	Including Subtotals
	Recalculating Values for Subtotal Rows
	Performing Calculations at Sort Field Breaks
	Suppressing Grand Totals
	Conditionally Displaying Summary Lines and Text

	8. Using Expressions
	Using Expressions in Commands and Phrases
	Types of Expressions
	Expressions and Field Formats

	Creating a Numeric Expression
	Order of Evaluation

	Creating a Date or Date-Time Expression
	Formats for Date Values
	Performing Calculations on Dates
	Cross˚Century Dates With DEFINE and COMPUTE
	Returned Field Format Selection
	Using a Date Constant in an Expression
	Extracting a Date Component
	Combining Fields With Different Formats in an Expression

	Creating a Character Expression
	Embedding a Quotation Mark in a Quote Delimited-Literal String
	Concatenating Character Strings

	Creating a Logical Expression
	Creating a Conditional Expression

	9. Customizing Tabular Reports
	Creating Paging and Numbering
	Specifying a Page Break: PAGE-BREAK
	Inserting Page Numbers: TABPAGENO
	Suppressing Page Numbers: SET PAGE
	Preventing an Undesirable Split

	Separating Sections of a Report: SKIP-LINE and UNDER-LINE
	Adding Blank Lines: SKIP-LINE
	Underlining Values: UNDER-LINE

	Suppressing Fields: SUP-PRINT or NOPRINT
	Creating New Column Titles: AS
	Customizing Column Names: SET QUALTITLES
	Positioning Columns: IN
	Reducing a Report’s Width: FOLD-LINE and OVER
	Compressing the Columns of Reports: FOLD-LINE
	Decreasing the Width of a Report: OVER

	Controlling Column Spacing: SET SPACES
	Column Title Justification
	Customizing Reports With SET Parameters
	Producing Headings and Footings
	Report and Page Headings
	Report and Page Footings
	Subheads
	Subfoots
	Positioning Text
	Using Data in Headings and Footings
	Producing a Free-Form Report

	Conditionally Formatting Reports With the WHEN Clause
	Controlling the Display of Empty Reports

	10. Styling Reports: StyleSheets
	Introduction to StyleSheets
	What Is a StyleSheet?
	What Is a Style?
	When You Need to Create a StyleSheet File
	Comparison of Reports With and Without StyleSheets

	Creating a StyleSheet
	Creating a StyleSheet Within a Report Request
	Activating an Existing StyleSheet File

	Printing Styled Reports
	Styling the Page Layout
	Displaying Current Settings: The ? STYLE Query

	StyleSheet Files
	StyleSheet Syntax
	Checking StyleSheet Syntax
	Style Definitions

	Identifying Report Components
	Selecting and Manipulating Report Components
	Selecting Headings and Footings
	Selecting Report Columns
	Positioning Headings, Footings, and Columns
	Determining Column Widths
	Changing Column Sequence
	Specifying Column Spacing

	StyleSheet Inheritance
	Conditional Styling

	11. Saving and Reusing Report Output
	Saving Your Report Output
	Creating HOLD and PCHOLD Files
	Holding Report Output in FOCUS Format
	Controlling Attributes in HOLD Master Files
	Controlling Field Names in a HOLD Master File
	Controlling Fields in a HOLD Master File
	Controlling the TITLE and ACCEPT Attributes in the HOLD Master File

	Keyed Retrieval From HOLD Files
	Creating SAVE and SAVB Files
	Choosing Output File Formats
	Saving Report Output in INTERNAL Format

	12. Handling Records With Missing Field Values
	Irrelevant Report Data
	Missing Field Values
	MISSING Attribute in the Master File
	MISSING Attribute in a DEFINE Command
	Testing for a Segment With a Missing Field Value
	Preserving Missing Data Values in an Output File

	Handling a Missing Segment Instance
	Including Missing Instances in Reports With the ALL. Prefix
	Including Missing Instances in Reports With the SET ALL Command
	Testing for Missing Instances in FOCUS Data Sources

	Setting the NODATA Character String

	13. Joining Data Sources
	Types of Joins
	Unique and Non-Unique Joined Structures
	Recursive Joined Structures

	How the JOIN Command Works
	Creating an Equijoin
	Joining From a Virtual Field to a Real Field Using an Equijoin
	Data Formats of Shared Fields
	Joining Fields With Different Numeric Data Types

	Using a Conditional Join
	Preserving Virtual Fields During Join Parsing
	Preserving Virtual Fields Using KEEPDEFINES
	Preserving Virtual Fields Using DEFINE FILE SAVE and RETURN
	Screening Segments With Conditional JOIN Expressions
	Parsing WHERE Criteria in a Join

	Displaying Joined Structures
	Clearing Joined Structures
	Clearing a Conditional Join

	14. Merging Data Sources
	Merging Data
	MATCH Processing
	MATCH Processing With Common High Order Sort Fields
	Fine Tuning MATCH Processing
	Universal Concatenation
	Field Name and Format Matching

	Merging Concatenated Data Sources
	Using Sort Fields in MATCH Requests

	Cartesian Product

	15. Improving Report Processing
	Rotating a Data Structure for Enhanced Retrieval
	Optimizing Retrieval Speed for FOCUS Data Sources
	Automatic Indexed Retrieval
	Data Retrieval Using TABLEF
	Preserving the Internal Matrix of Your Last Report

	16. Creating Financial Reports
	Reporting With FML
	Creating Rows From Data
	Changing Row Titles
	Creating Rows From Multiple Records
	Using the BY Phrase in FML Requests

	Performing Inter-Row Calculations
	Referring to Rows
	Referring to Columns
	Referring to Column Numbers
	Referring to Contiguous Columns
	Referring to Column Addresses
	Referring to Relative Column Addresses
	Referring to Column Values

	Referring to Cells
	Using Subroutines in Calculations
	Supplying Data Directly in the FML Request
	Inserting Rows of Free Text
	Adding Columns to an FML Report
	Creating Recursive Models
	Formatting an FML Report
	Suppressing Tagged Rows
	Suppressing Rows With No Data

	Saving and Retrieving Intermediate Report Results
	Posting Data

	Creating HOLD Files From FML Reports

	17. Creating a Free-Form Report
	Introduction to Free-Form Reports
	Designing a Free-Form Report
	Incorporating Text in a Free-Form Report
	Incorporating Data Fields in a Free-Form Report
	Incorporating Graphic Characters in a Free-Form Report
	Laying Out a Free-Form Report
	Sorting and Selecting Records in a Free-Form Report

	18. Creating Graphs: GRAPH
	Introduction
	GRAPH vs. TABLE Requests
	Controlling the Format
	Graphic Devices Supported

	Command Syntax
	GRAPH vs. TABLE Syntax
	Specifying Graph Forms and Contents

	Graph Forms
	Connected Point Plots
	Histograms
	Bar Charts
	Pie Charts
	Scatter Diagrams

	Adjusting Graph Elements
	The Horizontal Axis: System Defaults
	The Vertical Axis: System Defaults
	Highlighting Facilities

	Special Topics
	Plotting Dates
	Handling Missing Data
	Using Fixed-Axis Scales
	Saving Formatted GRAPH Output
	Displaying Graphs With PC/FOCUS or FOCUS for Windows
	Creating Formatted Input for CA˚TELLAGRAF
	Using the FOCUS ICU Interface

	Special Graphics Devices
	Medium-Resolution Devices
	High-Resolution Devices

	Command and SET Parameter Summary
	GRAPH Command
	SET Parameters

	19. Using SQL to Create Reports
	Supported and Unsupported SQL Statements
	Using SQL Translator Commands
	Automatic Passthru
	The SQL SELECT Statement
	SQL Joins
	SQL CREATE TABLE and INSERT Commands
	SQL CREATE VIEW and DROP VIEW Commands
	Cartesian Product Style Answer Sets
	Continental Decimal Notation (CDN)
	Specifying Field Names in SQL Requests
	SQL UNION, INTERSECT, and EXCEPT Operators
	Numeric Constants, Literals, Expressions, and Functions

	SQL Translator Support for Date, Time, and Timestamp Fields
	Extracting Date-Time Components Using the SQL Translator

	Index Optimized Retrieval
	Optimized Joins

	TABLEF Optimization
	SQL INSERT, UPDATE, and DELETE Commands

	Appendix A: Master Files and Diagrams
	Creating Sample Data Sources
	The EMPLOYEE Data Source
	The EMPLOYEE Master File
	The EMPLOYEE Structure Diagram

	The JOBFILE Data Source
	The JOBFILE Master File
	The JOBFILE Structure Diagram

	The EDUCFILE Data Source
	The EDUCFILE Master File
	The EDUCFILE Structure Diagram

	The SALES Data Source
	The SALES Master File
	The SALES Structure Diagram

	The PROD Data Source
	The PROD Master File
	The PROD Structure Diagram

	The CAR Data Source
	The CAR Master File
	The CAR Structure Diagram

	The LEDGER Data Source
	The LEDGER Master File
	The LEDGER Structure Diagram

	The FINANCE Data Source
	The FINANCE Master File
	The FINANCE Structure Diagram

	The REGION Data Source
	The REGION Master File
	The REGION Structure Diagram

	The COURSES Data Source
	The COURSES Master File
	The COURSES Structure Diagram

	The EMPDATA Data Source
	The EMPDATA Master File
	The EMPDATA Structure Diagram

	The EXPERSON Data Source
	The EXPERSON Master File
	The EXPERSON Structure Diagram

	The TRAINING Data Source
	The TRAINING Master File
	The TRAINING Structure Diagram

	The PAYHIST File
	The PAYHIST Master File
	The PAYHIST Structure Diagram

	The COMASTER File
	The COMASTER Master File
	The COMASTER Structure Diagram

	The VideoTrk and MOVIES Data Sources
	VideoTrk Master File
	MOVIES Master File
	VideoTrk Structure Diagram
	MOVIES Structure Diagram

	The VIDEOTR2 Data Source
	The VIDEOTR2 Master File
	The VIDEOTR2 Access File
	The VIDEOTR2 Structure Diagram

	The Gotham Grinds Data Sources
	The GGDEMOG Data Source
	The GGORDER Data Source
	The GGPRODS Data Source
	The GGSALES Data Source
	The GGSTORES Data Source

	Appendix B: Error Messages
	Accessing Error Files
	Displaying Messages Online

	Appendix C: Syntax Summary
	TABLE Syntax Summary
	TABLEF Syntax Summary
	MATCH Syntax Summary
	FOR Syntax Summary

	Appendix D: Writing User-Coded Programs to Create HOLD Files
	Arguments Used in Calls to Programs That Create HOLD Files

	Appendix E: Character Charts
	Letters
	Numbers
	Punctuation
	Symbols
	Accent Marks and Accented Letters

	Index

